Universiti Teknologi Mara

Fuzzy Inference System Approach to Quantify Water Pollution Level in Klang River

Fatin Norfarisha Binti Rosman

Report submitted in fulfillment of the requirements for Bachelor of Science (Hons.) Management Mathematics Faculty of Computer and Mathematical Sciences

June 2020

STUDENT'S DECLARATION

I certify that this report and the research to which it refers are the product of my own work and that any ideas or quotation from the work of other people, published or otherwise are fully acknowledged in accordance with the standard referring practices of the discipline.

Fatsh

FATIN NORFARISHA BT ROSMAN 2017313779

JUNE 25, 2020

ABSTRACT

The Water Quality Index is an important assessment of water that sustains and preserves the aquatic ecosystem. In Malaysia, the current classification practice of the Department of Environment Water Quality Index (DOE WQI) shows a rigid value in assessing the input of parameters that are close to the boundary class. However, more rational approach is needed in the design of the water quality index, as the existing indices have a number of inconsistencies and need to be corrected. The parameters of water quality considered for obtaining WQI are different for all indices. Some important parameters have not been considered at all and the allocation of the weight age factor is completely subjective. At the same time, some parameters can dramatically change the results without justifying it. This study thus proposed a technique to use the Mamdani Fuzzy Inference Method (FIS) to determine the parameters in a holistic way. As an evaluation tool, the method describes the groups with various ranges and aggregates the parameters using membership function and Centroid function respectively. In this study, a numerical example was adapted based on data obtained from DOE on three sampling stations along the Klang River. It was adapted to show the proposed approach. The findings shown using the proposed methods indicate that the status of Klang River is ranging from Class 3 to Class 5. Overall, FIS is able to evaluate the parameters and execute them in a single index, representing the condition from Class 1 (Excellent) to Class 5 (Poor) water quality scales.

Keywords: Fuzzy Inference System, Water Quality Index, Fuzzy Membership Function

TABLE OF CONTENTS

CONTENTS		PAGE
SUPERVIS	ii	
DECLARA	iii	
ACKNOWI	LEDGEMENT	iv
ABSTRACT	v	
TABLE OF CONTENTS		vi
LIST OF FIGURES		viii
LIST OF TABLES		ix
LIST OF AI	BBREVIATIONS	х
CHAPTER	ONE: INTRODUCTION	
1.1	Background of the Study	1
1.2	Problem Statement	3
1.3	Objective of the Study	4
1.4	Scope of the Study	4
1.5	Significance of the Study	5
CHAPTER	TWO: LITERATURE REVIEW	
2.1	River pollution in The Klang River	6
2.2	Fuzzy Inference System	8
2.3	Application of Fuzzy Inference System	9
2.4	Summary	11
CHAPTER	THREE: RESEARCH METHODOLOGY	
3.1	Method of Data Collection	12
3.2	Method of Data Analysis	13

3.3	Linguistic Variables		14
3.4	FIS in	IS into Water Quality Assessment	
	3.4.1	Fuzzification	16
	3.4.2	The Fuzzy Operators	17
	3.4.3	The Inference Rules	17
	3.4.4	Aggregation	18
	3.4.5	Defuzzification	18

CHAPTER FOUR: RESULTS AND DISCUSSIONS

4.1	Determining the Mamdani Fuzzy Inference System input		
	and output variables		
4.2	Fuzzification	20	
	4.2.1 Fuzzy Number of Ammonia Nitrogen Variable	20	
	4.2.2 Fuzzy Number of Biochemical Oxygen Demand Variable	22	
	4.2.3 Fuzzy Number of Suspended Solid Variable	24	
	4.2.4 Fuzzy Number of Water Quality Index Variable	25	
4.3	Parameters used Membership Function		
4.4	The Fuzzy Inference Rules	28	
4.5	Defuzzification		
CHAPTER FIVE: CONCLUSIONS AND RECOMMENDATIONS			
5 1	Conclusions	35	

	5.1	Conclusions	33	
	5.2	Recommendations	36	
REFERENCES		37		
APPENDICES				

APPENDIX A: TITLE APPENDIX A	39