INTELLIGENT TRAFFIC CONTROL SYSTEM USING FUZZY LOGIC

Thesis is present in partial fulfillment for the award of Bachelor of Engineering (Hons) Electrical Universiti Teknologi MARA

SHAHRULNIZAR MOHAMAD ALIAS FACULTY OF ELECTRICAL ENGINEERING UNIVERSITI TEKNOLOGI MARA PULAU PINANG

FACULTY OF ELECTRICAL ENGINEERING UNIVERSITI TEKNOLOGI MARA

A report submitted to the Faculty of Electrical Engineering, Universiti Teknologi MARA in partial fulfillment of the requirement for the Bachelor of Engineering (Hons) Electrical

This thesis is approved by:

.....

Mr.Rozan Boudville (Project Supervisor) Faculty of Electrical Engineering Universiti Teknologi MARA Pulau Pinang

(Date : 25.04 2008...)

DECLARATION

This thesis, entitle "Intelligent Traffic Control System using Fuzzy Logic" is a presentation of my original research work. Wherever contributions of others are involved, which are not the results of my own work, have been clearly acknowledged in this thesis. I further certify that the work is original and has not been previously submitted for assessment in any other course or institution, except where specifically stated.

TABLE OF CONTENTS

TITL	E	PAGE
DECLARATION		i
ACKNOWLEDGEMENT		ii
ABSTRACT		iii
TABLE OF CONTENTS		iv
LIST OF FIGURE		vii
LIST OF TABLE		ix
ABBR	EVIATION	х
CHAF	PTER 1	1
INTRODUCTION		1
1.1	Background	1
1.2	History of Traffic Light	4
1.3	Overview of Intelligent Traffic Control System	7
1.4	Objective	7
1.5	Scope of Work	8
1.6	Outline of Thesis	8
СНАР	TER 2	9
LITERATURE REVIEW		9
2.1	Introduction	9
2.2	Traffic Light Control Based on Petri Nets	9
2.	2.1 Preliminaries of The Petri Nets	9
2.2.2 The Model of Traffic Light on Petri Nets		10
2.2.3 System Implementation using PLC		12
2.3	Traffic Light Control using Fuzzy Logic	12
2	.3.1 Fuzzy Logic Traffic Light Controller Design	13

2.3.2 Membership Function & Fuzzy Rule Base	14	
2.3.3 Advantages of the project	16	
2.4 A Logic Programming Approach and A Real Application	16	
2.4.1 A Logic Programming Approach to Urban Traffic Control	16	
2.4.2 Logic Programming with the Leibniz System	17	
2.4.3 The Development System	19	
CHAPTER 3		
METHODOLOGY		
3.1 Introduction	21	
3.2 Fuzzy Logic Controller	21	
3.2.1 Fuzzy Logic Theory	21	
3.2.2 Rules and Membership Function Design	26	
3.2.3 Fuzzy Logic Toolbox	27	
3.2.4 MATLAB Simulink	30	
3.2.5 Intelligent Traffic Light Control System	35	
3.3 RS232 Serial Communication	36	
3.3.1 Serial Communication using 'To Instrument Block' in MATLAB	36	
3.3.2 PIC Code to receive signal from PC	37	
3.3.3 RS232 Serial Port	39	
3.4 PIC16F877A Microcontroller	41	
3.4.1 Code Designer Lite	43	
3.4.2 MPLAB IDE	44	
3.4.3 PIC circuit	45	
3.5 Interfacing Circuit	46	
3.6 Traffic Light Model	48	
3.7 Flow Chart of Traffic Control System	49	

ABSTRACT

This report paper is intended to document a report for EEE690 Project 2 Degree. It covers the results and also the progress report continued from the last semester work done. The implementation of an intelligent traffic light control system using fuzzy logic technology which capability of mimicking human intelligent for controlling traffic light. This is to replace and improve the performance of conventional fixed time traffic light control system. The inputs fuzzy variables are quantized constant signals and the output fuzzy variable is the length of time to extend in seconds. Software based on MATLAB has been developed to simulate an isolated traffic junction and implement to the hardware interfacing with using microcontroller PIC16F877A.