

UNIVERSITI TEKNOLOGI MARA

ANIMATION MAPPING ON CORONA VIRUS (COVID-19) DISEASE CASES IN MALAYSIA

ANDRI PUTRA MALINDO BIN NURDIWIKAR

Thesis submitted in fulfilment of requirements for the degree of Bachelor of Surveying Science and Geomatics (Hons)

Faculty of Architecture, Planning and Surveying

February 2021

AUTHOR'S DECLARATION

I declare that the work in this thesis/dissertation was carried out in accordance with the regulations of Universiti Teknologi MARA. It is original and is the results of my own work, unless otherwise indicated or acknowledged as referenced work. This thesis has not been submitted to any other academic institution or non-academic institution for any degree or qualification.

I, hereby, acknowledge that I have been supplied with the Academic Rules and Regulations for Post Graduate, Universiti Teknologi MARA, regulating the conduct of my study and research.

Name of Student	:	Andri Putra Malindo bin Nurdiwikar
Student I.D. No.	:	2017733233
		Bachelor of Surveying Science and
Programme	:	Geomatics (Honours) – AP220
Faculty	:	Architecture, Planning & Surveying
Thesis/Dissertation Title	:	Animation Mapping on Corona Virus
		(COVID-19) Disease Cases in Malaysia
Signature of Student	:	
Date	:	15 th February 2021

ABSTRACT

Recognizing the spatial distribution of the COVID-19 epidemic is important for forecast local outbreak and designing policies on public health during COVID-19's early stages. The issue here is insufficient research on geographical modelling of COVID-19 disease. Public health authorities rely on conventional approaches to track and manage the spread of infectious diseases. Therefore, this study aimed to develop spatial data infrastructure for COVID-19 local distribution in Malaysia, analyze the pattern of COVID-19 diseases based on spatial distribution of the cases, produce an animated map of COVID-19 disease cases for Malaysia. Geo-visualization techniques are used in this study which is use the animation mapping method to support analyze spatial temporal data to determine the hotspot area for the disease cases. Animated maps play an important part in the spatial temporal exchange of information. To ensure the data is well organized in this study, the Spatial Data Infrastructure Framework (SDI) was implemented. Through understanding the movement patterns of this disease, it is beneficial to help the Ministry of Health Malaysia (MOH). Therefore, some actions can be planned and will soon be taken by the MOH to overcome the problems that cause this disease. Actions that can be taken is to enforce restrictions on the movement of people in or out of areas with high cases or hotspots.

TABLE OF CONTENT

			Page
CON	FIRMATI	ON BY PANEL OF EXAMINERS	ii
SUPE	RVISOR'	S DECLARATION	iv
ABST	RACT		ii
ACK	NOWLED	GEMENT	iii
TABI	LE OF CO	NTENT	iv
LIST	OF TABL	LES	vii
LIST	OF FIGU	RES	viii
LIST	OF ABBR	REVIATIONS / NOMENCLATURE	X
CHA	PTER 1 : I	INTRODUCTION	1
1.1	Researc	ch Background	1
1.2	Problem	n Statement	3
1.2	Researc	ch Question	4
1.3	Aim and	d Objectives	4
1.4	Scope a	and Limitation	4
1.5	Signific	cant of Research	5
1.7	Summa	ry	6
CHA	PTER 2 : I	LITERATURE REVIEW	7
2.1	Introduc	ction	7
2.2	COVID	0-19 Pandemic Cases	7
	2.2.1	Definition of COVID-19 and Cases	7
	2.2.2	Transmission of COVID-19	9
	2.2.3	Sign and Symptoms	10
	2.2.4	Prevention	11
2.3	Various	Approaches of COVID-19 Pandemic Mapping Globally	12
	2.3.1	Current Approaches to COVID-19 Pandemic Mapping in	
		Malaysia	14
2.4	Databas	se management system (DBMS)	15

CHAPTER 4 : RESULT AND ANALYSIS		45	
4.1	Introduction		45
4.2	Output of Spatial Data Infrastructure (SDI)		49
4.3	Identify		
	Distrib	ution in Malaysia	50
	4.3.1	Average Nearest Neighbor Distance	50
	4.3.2	Spatial Autocorrelation (Global Moran'I)	52
	4.3.3	Local Indicator of Spatial Association (LISA)	53
4.4	Hot Spot Analysis		55
4.5	Spatio-Temporal Data Visualization		57
4.6	Summa	ary	58

CHAPTER 5 : CONCLUSION AND RECOMMENDATION		59
5.1	Introduction	59
5.2	Conclusion	60
5.3	Future Recommendation	61
5.4	Summary	62
BIBLIOGRAPHY		63
APPENDICES		68