DECOLOURIZATION OF AZO DYES BY USING ACTIVATED CARBON OF Zea mays HUSK

SITI MASTURA BINTI MOHD HANAFIAH

Final Year Project Report Submitted in Partial Fulfillment of the Requirements for the Degree of Bachelor of Science (Hons.) Biology in the Faculty of Applied Sciences Universiti Teknologi MARA

JULY 2019

This Final Year Report entitled "Decolourization Of Azo Dyes By Using Activated Carbon Of Zea mays Husk" was submitted by Siti Mastura binti Mohd Hanafiah, in partial fulfilment of the requirements for the Degree of Bachelor of Science (Hons.) Biology, in the Faculty of Applied Sciences, and was approved by

Mohd Zaini bin Nawahwi Supervisor Faculty of Applied Sciences Universiti Teknologi MARA (UiTM) Negeri Sembilan, Kampus Kuala Pilah, Pekan Parit Tinggi, 72000 Kuala Pilah Negeri Sembilan

Sti Norazura Jamal Project Coordinator FSG661 B. Sc. (Hons.) Biology Faculty of Applied Sciences Universiti Teknologi MARA 72000 Kuala Pilah, Negeri Sembilan

Dr. Aslizah Mohd Aris Head School of Biology Faculty of Applied Sciences Universiti Teknologi MARA 72000 Kuala Pilah Negeri Sembilan

Date:

TABLE OF CONTENT

PAGE

ACKNOWLEDGEMENT	iii
TABLE OF CONTENT	iv
LIST OF TABLES	vi
LIST OF FIGURES	vii
LIST OF ABBREVIATIONS	viii
ABSTRACT	ix
ABSTRAK	х

CHAPTER 1: INTRODUCTION

1.1	Background Study	1
1.2	Problem Statement	2
1.3	Significance of Study	3
1.4	Objectives of the Study	5

CHAPTER 2: LITERATURE REVIEW

2.1	<i>Zea mays</i> husk		
2.2	Activ	ated Carbon from Solid Agricultural Waste	7
2.3	Azo d	lyes	10
	2.3.1	Tartrazine	10
	2.3.2	Carmoisine	12
	2.3.3	Ponceau 4R	14
2.4	Factor	rs Affecting Azo dyes Adsorption	
	2.4.1	Contact time	16
	2.4.2	Adsorbent Dosage	16
	2.4.3	Temperature	17
	2.4.4	Initial Concentration	17
	2.4.5	pH	18

CHAPTER 3: METHODOLOGY

3.1	1 Materials		
	3.1.1	Raw materials	19
	3.1.2	Chemicals	19
	3.1.3	Apparatus	19
3.2	Metho	ods	
	3.2.1	Sample collection	20
	3.2.2	Preparation of bio-sorbent	21
	3.2.3	Preparation of activated carbon of Zea mays husk	21
	3.2.4	Fourier Transform Infrared (FTIR) analysis	22
	3.2.5	Preparation of the synthetic waste water	22
	3.2.6	Screening of decolourization rate between three dyes	22
	3.2.7	Optimization of azo dyes adsorption	23
	3.2.8	Batch adsorption experiments	24
	3.2.9	Adsorbance reading by using UV/Vis Spectrophotometer	24
3.3	Statist	tical Analysis	25

CHAPTER 4: RESULTS AND DISCUSSION

4.1	Identification of Functional Group by FT-IR analysis		26
4.2	Screening of three different types of Azo dyes		30
4.3	.3 Optimization of dye decolourization		
	4.3.1	Effect of different initial concentration	34
	4.3.2	Effect of different adsorbent dosage	36
	4.3.3	Effect of contact time	38
4.4	Batch	adsorption analysis	40

CHAPTER 5: CONCLUSIONS AND RECOMMENDATIONS 43

CITED REFERENCES	45
APPENDICES	52
CURRICULUM VITAE	67

ABSTRACT

DECOLOURIZATION OF AZO DYES BY USING ACTIVATED CARBON

OF Zea mays HUSK

Zea mays husk has become part of the agricultural waste that are available abundantly which are usually underutilized. Previous study has proven that maize stem as an activated carbon would yield to have excellent adsorption capacity for dye effluent in wastewater, which lead to this study where maize husk is modified into activated carbon. Commercial activated carbon that are widely in the industry are mostly expensive and the production of non-conventional activated carbon from agricultural waste would provide alternatives to this problem as most of the waste can be categorized as inexpensive, abundant and have novelty characteristic. The objectives of this study are to compare the decolourization percentage between three types of azo dyes which are Tartrazine, Carmoisine and Ponceau 4R by using activated carbon derived from Zea mays husk. The result obtained from the study manifest that there are significant difference in decolourization percentage between the dyes where Carmoisine possess the highest percentage of decolourization (51.79%) followed by Tartrazine (41.57%) and Ponceau 4R (28.85%) with the least decolourization percentage. Therefore, Carmoisine has been chosen for the optimization process where the optimum initial concentration, amount of adsorbent dosage and contact time were determined. Based on the result, the best parameters for the decolourization of the dye are at 25 mg/L, by using 0.15 g of activated carbon in contact with the dye solution for 120 minutes. All the optimum parameters were applied in batch adsorption process where the percentage of decolourization yield to 98.98% in a duration of 15 minutes. The adsorption capacity (q_m) for the activated carbon of Zea mays husk in this study has been obtained to be 8.7121 mg/g. Thus, Zea mays husk can be used as effective bio-sorbent for the adsorption of azo dyes.