DEVELOPMENT OF FUZZY LOGIC CONTROLLER FOR MAGNETIC LEVITATION SYSTEM

Thesis is presented in partial fulfillment for the award of the Bachelor of Electrical Engineering (Hons) UNIVERSITI TEKNOLOGI MARA

HASLINA BT ADNAN FACULTY OF ELECTRICAL ENGINEERING UNIVERSITI TEKNOLOGI MARA (UITM) 13500 PERMATANG PAUH PULAU PINANG

FACULTY OF ELECTRICAL ENGINEERING UNIVERSITI TEKNOLOGI MARA

A report submitted to the Faculty of Electrical Engineering, Universiti Teknologi MARA in partial fulfillment of the requirement for the Bachelor of Electrical Engineering (Hons)

This thesis is approved by:

abt

Pn. Afaf Rozan Mohd. Radzol(Project Supervisor)Faculty of Electrical EngineeringUniversiti Teknologi MARAPulau Pinang

(Date: 25 April 2008)

DECLARATION

It is hereby declared that all the materials in this thesis entitle "Developed of Fuzzy Logic Controller" are the result of my original research work. All the material not from my own work has been clearly acknowledged in this thesis.

TABLE OF CONTENTS

DECLARATION	i
ACKNOWLEDGEMENTS	ii
ABSTRACT	iii
TABLE OF CONTENTS	iv
LIST OF FIGURE	vi
LIST OF TABLE	vii
LIST OF EQUATION	ix
ABBREVIATION	X

CHAPTER		TITLE			
1	INTROD	UCTION			
	1.1	AN OVERVIE	1		
	1.2	OBJECTIVES	1		
	1.3	SCOPE OF W	2		
	1.4	DISSERTATIO	3		
2	LITERA	TURE REVIEW	I		
	2.1	MAGNETIC L	4		
	2.2	FUZZY LOGI	C	5	
		2.2.1 Structu	re of Fuzzy Controller	5	
		2.2.1.1	Preprocessing	7	
		2.2.1.2	Fuzzification	8	
		2.2.1.3	Rule base	8	
		2.2.1.4	Membership function	8	
		2.2.1.5	Fuzzy Inference Engine	9	
		2.2.1.6	Defuzzification	10	

2.3 SOFTWARE

|--|

10

		2.3.2	SIMULINK Block Diagram	11
		2.3.3	Fuzzy Logic Toolbox	11
2	METL)CV	
3				
	2.1	CONT		14
	5.2	3.2.1	Euzzy Logic Controller Design Procedure	14
		3.2.2	Fuzzy Logic Controller Design	15
4	PID 0	CONTRO	DLLER	
	4.1	INTRO	DUCTION	43
	4.2	PID CO	ONTROLLER	43
		4.2.1	Proportional term	45
		4.2.2	Integral term	45
		4.2.3	Derivative term	46
	4.3	PID SIN	MULINK model	47
5	RESU	JLTS AI	ND DISCUSSION	
	5.1	INTRO	DUCTION	49
	5.2	RESUL	TS FOR PID CONTROLLER	50
	5.3	RESUL	TS FOR FUZZY LOGIC CONTROLLER	52
		5.3.1	Result by using 9 rules (triangular mf)	52
		5.3.2	Result by using 25 rules (triangular mf)	53
		5.3.3	Result by using 25 rules (Gaussian curve mf)	54
		5.3.4	Result by using 25 rules (Z, Pi, and S curve mf	55
	5.4	DISC	JSSIONS	56
6	CON		ONS AND FUTURE DEVELOPMENT	
0	6.1	CONCI		57
	6.2	FUTUF	RE DEVELOPMENT	57
REFERENCES				58

APPENDICES

ABSTRACT

Magnetic Levitation (Maglev) system is nonlinear and complex system. The purpose of this project was to develop Fuzzy Logic Controller (FLC) to the Maglev system. Fuzzy Logic Controller resemble human decision making. This controller is used to control the tracking performance of the Maglev system. Fuzzy Logic Controller is designed by using MATLAB Fuzzy Toolbox and the Magnetic Levitation control system block diagram environment is designing using SIMULINK. There is several method uses to control the Maglev system such as PID controller. The result was produced after testing was completed and show in the experimental results. The comparison between the both PID and Fuzzy controller performance will be presented in this thesis.