ESSENTIAL OILS AND BIOACTIVITIES OF Piper betle

SOFEA SYAHIRA BT AHMAD SUFI

BACHELOR OF SCIENCE (Hons.) CHEMISTRY FACULTY OF APPLIED SCIENCES UNIVERSITI TEKNOLOGI MARA

JANUARY 2019

This Final Year Project Reported entitled "Essential Oils and Bioactivities of *Piper betle*" was submitted by Sofea Syahira Bt Ahmad Sufi, in partial fulfilment of the requirements for the Degree of Bachelor of Science (Hons.) Chemistry, in the Faculty of Applied Sciences, and was approved by

Dr. Nor Akmalazura Bt Jani Supervisor B. Sc. (Hons.) Chemistry Faculty of Applied Sciences Universiti Teknologi MARA 72000 Kuala Pilah Negeri Sembilan

Ilyanie Bt Yaacob Co-Supervisor B. Sc. (Hons.) Chemistry Faculty of Applied Sciences Universiti Teknologi MARA 72000 Kuala Pilah Negeri Sembilan

Nurul Huda Abdul Halim Project Coordinator B. Sc. (Hons.) Chemistry Faculty of Applied Sciences Universiti Teknologi MARA 72000 Kuala Pilah Negeri Sembilan Mazni Musa Head of Programme B. Sc. (Hons.) Chemistry Faculty of Applied Sciences Universiti Teknologi MARA 72000 Kuala Pilah Negeri Sembilan

Date:

TABLE OF CONTENTS

	Page
ACKNOWLEDGEMENTS	iii
TABLE OF CONTENTS	iv
LIST OF TABLES	vi
LIST OF FIGURES	vii
LIST OF ABBREVIATIONS	viii
ABSTRACT	Х
ABSTRAK	xi

CHAPTER 1 INTRODUCTION

1.1	Background of study	1
1.2	Problem statement	3
1.3	Significant of study	4
1.4	Objectives of study	4

CHAPTER 2 LITERATURE REVIEW

2.1	Piperaceae family	
2.2	Piper genus	5
2.3	The essentials oil of Piper species	8
	2.3.1 Terpenes	8
	2.3.2 Phenylpropanoids	11
2.4	Bioactivities of Piper essential oils	14

CHAPTER 3 METHODOLOGY

3.1	Materials	16
	3.1.1 Raw materials	16
	3.1.2 Chemicals	16
	3.1.3 Apparatus and instrument	17
3.2	Extraction and analysis of the essential oils	17
3.3	3 Antioxidant assay	
3.4	Antibacterial assay	19

CHAPTER 4 RESULTS AND DISCUSSION

4.1	Chemical composition of <i>P. betle</i> leaves essential oils		
	4.1.1	Chemical composition of P. betle leaves essential oils from	21
		Negeri Sembilan	
	4.1.2	Chemical composition of P. betle leaves essential oils from	23
		Selangor	
	4.1.3	Chemical composition of <i>P. betle</i> essential oil from Malacca	27

	4.1.4	Summary of the chemical composition analysis of the <i>P. betle</i>	29
		leaves oils from Negeri Sembilan, Selangor and Malacca	
4.2	Bioact	tivities of the leaves essential oils of P. betle	35
	4.2.1	Antioxidant activity	35
	4.2.2	Antibacterial activity	36

CHAPTER 5 CONCLUSION AND RECOMMENDATIONS 5.1 Conclusion

5.1	Conclusion	39
5.2	Recommendations	40

CITED REFERENCES	41
APPENDICES	47
CURRICULUM VITAE	49

ABSTRACT

ESSENTIAL OILS AND BIOACTIVITIES OF Piper betle

The chemical compositions as well as antioxidant and antibacterial activities of the leaves of *P. betle* collected from Negeri Sembilan, Selangor and Malacca have been studied. The essential oils were extracted by using hydrodistllilation method and the chemical compositions were analysed by using gas chromatography-mass spectrometry (GC-MS). The antioxidant effect was carried out using 2,2diphenyl-1-picrylhydrazyl radical scavenging assay, while screening for antibacterial activity was performed using disc diffusion method. The essential oils from Negeri Sembilan, Selangor and Malacca yielded 32 (90.6%), 22 (95.8%) and 34 (86.2%) compounds, respectively. All essential oils were dominated by phenylpropanoids (41.5-85.2%) with eugenol being the most abundant compound (24.0-61.1%). The essential oil from Negeri Sembilan was also rich in 4-ally-1,2diacetoxybenzene (13.9%), chavibetol acetate (12.6%) and germacrene D (9.5%), while the essential oil from Selangor was also contained chavicol (12.2%) and chavibetol acetate (5.9%) as the main compounds. Germacrene D (5.8%), β caryophyllene (5.2%) and 4-ally-1,2-diacetoxybenzene (5.2%) were also identified in significant amount in the essential oil from Malacca. All investigated oils showed 2,2-diphenyl-1-picrylhydrazyl radical scavenging activity with the IC₅₀ values $50.53 - 126.10 \ \mu g/mL$. The highest radical scavenging activity was showed by the essential oil from Selangor (IC₅₀ 50.53 μ g/mL). The essential oil from Selangor also demonstrated the highest antibacterial activity toward S. aureus and E. coli with the inhibition zones 25.00 and 21.60 mm, respectively.