OPTIMIZATION OF EXTRACTION PARAMETERS FROM POMEGRANATE PEELS (*Punica granatum* L.) EXTRACT AS NATURAL COLORANT

SHAZA SHAHIRA BINTI BAHARI

BACHELOR OF SCIENCE (Hons.) CHEMISTRY FACULTY OF APPLIED SCIENCES UNIVERSITI TEKNOLOGI MARA

JANUARY 2019

This Final Year Project Reported entitled "Optimization of Extraction Parameters from Pomegranate Peels (*Punica granatum* L.) Extract as Natural Colorant " was submitted by Shaza Shahira binti Bahari, in partial fulfilment of the requirements for the Degree of Bachelor of Science (Hons.) Chemistry, in the Faculty of Applied Sciences, and was approved by

> Hasratul Nadiah binti Mohd Rashid Supervisor B. Sc. (Hons.) Chemistry Faculty of Applied Sciences Universiti Teknologi MARA 72000 Kuala Pilah Negeri Sembilan

Nurul Huda binti Abdul Halim Project Coordinator B. Sc. (Hons.) Chemistry Faculty of Applied Sciences Universiti Teknologi MARA 72000 Kuala Pilah Negeri Sembilan Mazni binti Musa Head of Programme B. Sc. (Hons.) Chemistry Faculty of Applied Sciences Universiti Teknologi MARA 72000 Kuala Pilah Negeri Sembilan

Date: _____

TABLE OF CONTENTS

Р	a	g	e
-	•••	-	-

ACKNOWLEDGEMENTS	iii
TABLE OF CONTENTS	iv
LIST OF TABLES	vi
LIST OF FIGURES	vii
LIST OF ABBREVIATIONS	viii
ABSTRACT	ix
ABSTRAK	X

CHAPTER 1 INTRODUCTION

1.1	Background of study	1
1.2	Problem statement	4
1.3	Significant of study	7
1.4	Objectives of study	9

CHAPTER 2 LITERATURE REVIEW

2.1	Pomegranate fruit		10
2.2	2 Applications of natural pigment		12
2.3	3 Extraction method		14
2.4	Effect	t on extraction parameters	15
	2.4.1	Effect on extraction time	15
	2.4.2	Effect on extraction temperature	16
	2.4.3	Effect on pH	17
	2.4.4	Effect on stability of light	17

CHAPTER 3 METHODOLOGY

3.1	3.1 Materials		19
	3.1.1	Raw material	19
	3.1.2	Chemicals	20
	3.1.3	Apparatus	20
3.2	Metho	ds	20
	3.2.1	Sample preparation	20
	3.2.2	Sample analysis	21
	3.2.3	Optimization of extraction time	21
	3.2.4	Optimization of extraction temperature	23
	3.2.5	Optimization of pH	24
	3.2.6	Determination of stability on light	25
	3.2.7	Determination of total natural pigment content in sample	26
3.3	Qualita	ative test for natural pigment	27
	3.3.1	Test with 2M hydrochloric acid	27

	3.3.2 Test with 2M sodium hydroxide	27
CHA	APTER 4 RESULTS AND DISCUSSION	
4.1	Optimization of extraction	28
4.2	Optimization of extraction time	29
4.3	Optimization of extraction temperature	32
4.4	Optimization of pH	35
4.5	Optimization of stability on light	39
4.6	Qualitative test for natural pigment	41
	4.6.1 Test with 2M hydrochloric acid	42
	4.6.2 Test with 2M sodium hydroxide	42

4.6.2	Test with 2M sodium hydroxide	
-------	-------------------------------	--

CHAPTER 5 CONCLUSION AND RECOMMENDATIONS

5.1	Conclusion	44
5.2	Recommendations	45

CITED REFERENCES	46
APPENDICES	51
CURRICULUM VITAE	55

ABSTRACT

OPTIMIZATION OF EXTRACTION PARAMETERS FROM POMEGRANATE PEELS (*Punica granatum* L.) EXTRACT AS NATURAL COLORANT

Pomegranate fruit (*Punica granatum* L.) is small tree of Asia which belongs to the family Punicaceae. The peels of pomegranate fruit are often considered as wastes that will lead to environmental problem. Thus, this study was emphasized at exploring the feasibility of using the peels of pomegranate fruit as natural colorant using solvent extraction technique. In this study, several extraction parameters were optimized and the total natural pigment content was identified using UV-Vis Spectrophotometer. Results obtained showed the optimum extractions for natural pigment of extraction time, temperature, and pH were 40 minutes, 80°C, and pH 2 respectively. For the determination of stability on light, sample extracted was more stable when kept in dark condition compare to expose with light. Qualitative methods also have been conducted in order to determine the presence of natural pigment in the sample extracted. In conclusion, the natural pigment extracted from the peels of pomegranate fruit not only has potential to be used as natural colorant pigment but it is also involves simple and safe technique, inexpensive, and environmental friendly.