SYNTHESIS, CHARACTERIZATION, OPTIMIZATION AND CATALYTIC ACTIVITY OF PALLADIUM(II)-4-NITROMETHOXY-N'-(-3-NITROBENZYLIDENE) BENZOHYDRAZONE COMPLEX IN HECK REACTION

ROSZAIDA BT MOHAMAAD ROSZAIDI

BACHELOR OF SCIENCE (Hons.) CHEMISTRY FACULTY OF APPLIED SCIENCES UNIVERSITI TEKNOLOGI MARA

JANUARY 2019

This Final Year Project Reported entitled "Synthesis, Characterization, Optimization and Catalytic Activity of Palladium(II)-4-methoxy-N-(3-nitrobenzylidene) Benzohydrazone Complex in Heck Reaction" was submitted by Roszaida Bt Mohamaad Roszaidi, in partial fulfilment of the requirements for the Degree of Bachelor of Science (Hons.) Chemistry, in the Faculty of Applied Sciences, and was approved by

Dr. Nur Rahimah Said Supervisor B. Sc. (Hons.) Chemistry Faculty of Applied Sciences Universiti Teknologi MARA 72000 Kuala Pilah Negeri Sembilan

Nurul Huda Abdul Halim Project Coordinator B. Sc. (Hons.) Chemistry Faculty of Applied Sciences Universiti Teknologi MARA 72000 Kuala Pilah Negeri Sembilan Mazni Musa Head of Programme B. Sc. (Hons.) Chemistry Faculty of Applied Sciences Universiti Teknologi MARA 72000 Kuala Pilah Negeri Sembilan

Date:

TABLE OF CONTENTS

	Page
ACKNOWLEDGEMENTS	iii
TABLE OF CONTENTS	iv
LIST OF TABLES	vi
LIST OF FIGURES	vii
LIST OF ABBREVIATIONS	ix
ABSTRACT	xi
ABSTRAK	xii

CHAPTER 1 INTRODUCTION

1.1	Background of study and problem statement	1
1.2	Significance of study	3
1.3	Objectives of study	4

CHAPTER 2 LITERATURE REVIEW

2.1	Hydrazone ligand			
2.2	2 Application of hydrazone			
	2.2.1	Biological activity	7	
	2.2.2	Catalytic activity	10	
2.3	Heck	reaction cross coupling formation	12	
	2.3.1	Organometallic compound as catalyst	14	
	2.3.2	Palladium catalyzed c-c coupling	15	
	2.3.3	Palladium as catalyst in Heck reaction	17	
2.4	Samp	le characterization	20	
	2.4.1	Fourier Transform Infrared (FTIR)	20	
	2.4.2	Ultraviolet Visible spectrometer (UV-Vis)	21	
	2.4.3	Carbon, Hydrogen, Nitrogen and Analyzer (CHN)	23	
	2.4.4	Nuclear Magnetic Resonance (NMR)	23	
	2.4.5	Gas Chromatography (GC-FID)	24	

CHAPTER 3 METHODOLOGY

3.1	Mater	ials and instrumentation	27
3.2	Synthe	esis of catalyst	28
	3.2.1	Synthesis of 4-methoxy-N'-(3-nitrobenzylidene)	benzohydrazone
		ligand	29
	3.2.2	Complexation study	29

	3.2.3	Synthesis	of	Palladium(II)-4-methoxy-N'-(3-nitr	obenzylidene)
		benzohydraz	zide c	omplex.	30
3.3	Cataly	tic testing			30
	3.3.1	Catalytic tes	ting i	n Heck reaction	31
3.4	Optim	ization of cat	alyst		32
	3.4.1	Effect of rea	ction	time	32
	3.4.2	Effect of dif	feren	t catalyst loading	32

CHAPTER 4 RESULTS AND DISCUSSION

Characterization of hydrazone ligand	33
Preliminary complexation study	38
Characterization of palladium catalyst	42
Catalytic testing for Heck reaction	45
Optimization of catalytic activity study	47
	Preliminary complexation study Characterization of palladium catalyst Catalytic testing for Heck reaction

CHAPTER 5 CONCLUSION AND RECOMMENDATIONS

5.1	Conclusion	49
5.2	Recommendations	50
CIT	TED REFERENCES	51
A DE	DENDICES	57

APPENDICES	57
CURRICULUM VITAE	77

ABSTRACT

SYNTHESIS, CHARACTERIZATION, OPTIMIZATION AND CATALYTIC ACTIVITY OF PALLADIUM(II)-4-NITROMETHOXY-N°-(-3-NITROBENZYLIDENE) BENZOHYDRAZONE COMPLEX IN HECK REACTION

Palladium metal offers various applications in the field of fine chemicals. As one of the most widely used catalytic metal due to its high activity and selectivity for carbon-carbon formation in the organic synthesis. This study focused on catalytic performances of palladium(II) - hydrazone complexes namely Palladium(II)-4nitromethoxy-N-(3-nitrobenzylidene) benzohydrazone as catalyst in Heck reaction. The hydrazone ligand has been derived from refluxing the mixture of 4methoxybenzohydrazide and 3-nitrobenzaldehyde in methanol while the palladium(II) – hydrazone complex was prepared by reacting palladium chloride with the synthesised hydrazone ligand. The synthesised of palladium(II) hydrazone complex were characterized by using Fourier transform infrared (FTIR), ¹H and ¹³C nuclear magnetic resonance (NMR) and UV-Vis spectroscopies. The melting point of hydrazone ligand in the range 188 $^{\circ}C$ – 189 $^{\circ}C$ meanwhile, the melting point of palladium(II) – hydrazone complex in the range 220 $^{\circ}$ C – 221 $^{\circ}$ C. The presence of important functional group in the palladium catalyst were confirmed by FTIR spectroscopy meanwhile, ¹H and ¹³C NMR results were confirmed the number of hydrogen and carbon in the hydrazone ligand and palladium(II) – hydrazone complex. The absorption maxima of Pd^{2+} cation and hydrazone ligand were showed through the results of UV-Vis spectroscopy. The preliminary complexation between Pd²⁺ cation and hydrazone ligand shows stoichiometric of 1 Pd²⁺ cation and 1 hydrazone ligand. Catalytic activity of palladium(II) – hydrazone complex was tested in the Heck reaction which is carboncarbon coupling reaction between 1-bromo-4-nitrobenzene and styrene. The product of the reaction was characterized by using FTIR to confirm the successful of reaction by using the palladium(II) – hydrazone complex as catalyst. Two parameters have been optimized which are effect of different catalyst loading and reaction time. The catalytic activity of palladium(II) – hydrazone complex was determine by using Gas chromatography spectroscopy. The excellent catalytic activity is achieved using catalyst loading 0.5 mmol % and 60 minutes of reaction time in DMA solvent with the presence of Na₂CO₃ as a base.