SYNTHESIS, CHARACTERISATION AND CORROSION INHIBITION STUDY OF FORMALDEHYDE AND 2-BENZOYLPYRIDINE THIOSEMICARBAZONE LIGANDS IN ACIDIC AND ALKALINE MEDIA

NUR AIMI NADHIRAH ANUAR

Final Year Project Report Submitted in Partial Fulfilment of the Requirements for the Degree of Bachelor of Science (Hons.) Chemistry in the Faculty of Applied Sciences Universiti Teknologi MARA

JANUARY 2019

This Final Year Project Reported entitled **"Synthesis, characterisation and corrosion inhibition study of formaldehyde and 2-benzoylpyridine thiosemicarbazone ligands in acidic and alkaline media"** was submitted by Nur Aimi Nadhirah Anuar, in partial fulfilment of the requirements for the Degree of Bachelor of Science (Hons.) Chemistry, in the Faculty of Applied Sciences, and was approved by

Dr. Nur Nadia Dzulkifli Supervisor B. Sc. (Hons.) Chemistry Faculty of Applied Sciences Universiti Teknologi MARA 72000 Kuala Pilah Negeri Sembilan

Nurul Huda Abdul Halim Project Coodinator B. Sc. (Hons.) Chemistry Faculty of Applied Sciences Universiti Teknologi MARA 72000 Kuala Pilah Negeri Sembilan Mazni Musa Head of Programme B. Sc. (Hons.) Chemistry Faculty of Applied Sciences Universiti Teknologi MARA 72000 Kuala Pilah Negeri Sembilan

Date:_____

TABLE OF CONTENTS

	Page
ACKNOWLEDGEMENTS	iii
TABLE OF CONTENTS	iv
LIST OF TABLES	vi
LIST OF FIGURES	vii
LIST OF ABBREVIATIONS	ix
ABSTRACT	xii
ABSTRAK	xiii

CHAPTER 1 INTRODUCTION

Background of study	1
Problem statement	6
Significant of study	8
Objectives	9
	Problem statement Significant of study

CHAPTER 2 LITERATURE REVIEW

Synthe	esis of thiosemicarbazone ligands	10
Corrosion study		12
2.2.1	Effect of molecular structure	12
2.2.2	Effect of acidic media	16
2.2.3	Effect of alkaline media	17
Other applications of thiosemicarbazone ligand		18
2.3.1	Anti-bacterial activity	18
2.3.2	Heavy metal removal	19
	Corros 2.2.1 2.2.2 2.2.3 Other 2.3.1	2.2.1 Effect of molecular structure2.2.2 Effect of acidic media2.2.3 Effect of alkaline media

CHAPTER 3 METHODOLOGY

3.1	Materi	als	22
	3.1.1	Chemicals	22
	3.1.2	Apparatus	22
	3.1.3	Characterisations	22
3.2	Methods		23
	3.2.1	Synthesis of formaldehyde 1-acetyl-3-thiosemicarbazone	23
	3.2.2	Synthesis of 2-benzoylpyridine 1-acetyl-3-thiosemicarbazone	23
3.3	Characterisation		23
	3.3.1	Melting point	23
	3.3.2	Fourier Transform Infrared (FTIR) spectroscopy	23

	3.3.3	Ultraviolet-Visible (UV-Vis) spectroscopy	24
	3.3.4	Nuclear Magnetic Resonance (NMR) spectroscopy	24
3.4	Corros	sion study	25
	3.4.1	Preparation of solution	25
		3.4.1.1 Acidic solution	25
		3.4.1.2Alkaline solution	25
	3.4.2	Weight loss analysis	26

CHAPTER 4 RESULTS AND DISCUSSION

4.1	Synthe	esis of thiosemicarbazone ligands	27
	4.1.1	Formaldehyde 1-acetyl-3-thiosemicarbazone (FATSC)	27
	4.1.2	2-benzoylpyridine 1-acetyl-3-thiosemicarbazone (BPATSC)	27
4.2	Charae	cterisation	28
	4.2.1	Melting point	28
	4.2.2	Infrared (IR) spectra	28
	4.2.3	Ultraviolet-visible (UV-Vis) spectra	36
	4.2.4	Nuclear magnetic resonance (NMR) spectra	39
4.3	Corros	sion inhibition study	44
	4.3.1	Weight loss analysis	44
		4.3.1.1 Acidic media	45
		4.3.1.2Alkaline media	53

CHAPTER 5 CONCLUSION AND RECOMMENDATIONS

5.1	Conclusion	61
5.2	Recommendations	63

CITED REFERENCES	64
APPENDICES	70
CURRICULUM VITAE	88

ABSTRACT

SYNTHESIS, CHARACTERISATION AND CORROSION INHIBITION STUDY OF FORMALDEHYDE AND 2-BENZOYLPYRIDINE THIOSEMICARBAZONE LIGANDS IN ACIDIC AND ALKALINE MEDIA

The universal usage of metal in the industrial and domestic applications could lead to corrosion due to the degradation of the metal surface. The corrosion process may occur in the acid and alkaline media. Corrosion inhibitor is suggested to be the most effective method that can be used to protect the metal against the corrosion. Thiosemicarbazone ligand is used as a corrosion inhibitor due to the presence of nitrogen and sulphur atom in their structure. The synthesized ligands that undergo reflux method were formaldehyde 1-acetyl-3-thiosemicarbazone (FATSC) and 2benzoylpyridine 1-acetyl-3-thiosemicarbazone (BPATSC). The ligands were characterised by using melting point analysis, Fourier Transform Infrared (FTIR), Ultraviolet-Visible (UV-Vis) and Nuclear Magnetic Resonance (NMR) spectroscopies. The melting point for FATSC and BPATSC are between 148-150 °C and 164-167 °C respectively. For IR analysis, a new stretching band of v(C=N)appeared in both ligands indicated that the ligands are successfully synthesized. The absence of v(C-S) indicated that the ligands are found in a thione form. The UV-Vis analysis showed a $\pi \rightarrow \pi^*$ transitions of carbonyl, thione and imine group for FATSC, while the group of carbonyl, thione, imine and aromatic ring for BPATSC. The $n \rightarrow \sigma^*$ electronic transition in BPATSC indicate the presence of electronegative atom such as nitrogen, oxygen and sulphur. As for the NMR analysis, the chemical shift derived from the ¹H NMR data obeyed the confirmation of hydrogen in the synthesised ligands. In the ¹³C NMR spectra, the ligands found to be in a form of thione tautomer due to the presence of C=S peak at 182.90 ppm (FATSC) and 182.35 ppm (BPATSC). The positive effectiveness towards corrosion inhibition showed that the ligands are good corrosion inhibitor in both acidic and alkaline media. In acidic media, corrosion inhibition in 1 M HCl are more effective than in 1 M H_2SO_4 since H^+ concentration in H_2SO_4 is higher which make it more corrosive. The efficiency of corrosion inhibitor is lower in 1 M NaOH compared to 1 M KOH because K^+ is more electropositive than Na^+ , which K^+ has higher ionic radius that reduce the corrosion rate more compared to Na⁺. BPATSC shows higher effectiveness as a corrosion inhibitor compared to FATSC. This is due to the presence of pyridine that activates the aromatic ring to increase the adsorption of the inhibitor onto the metal surface and reduce the corrosion rate. As a conclusion, the higher the concentration of inhibitor used, the higher its effectiveness towards corrosion inhibition.