PREPARATION OF MAGNETIC KAOLINITE COMPOSITE FOR LEAD REMOVAL IN AQUEOUS SOLUTION

IZZAN SALWANA BINTI IZMAN

Final Year Project Report Submitted in Partial Fulfilment of the Requirements for the Degree of Bachelor of Sciences (Hons.) Chemistry in the Faculty of Applied Sciences Universiti Teknologi MARA

JANUARY 2019

This Final Year Project Reported entitled **"Preparation of Magnetic Kaolinite Composite for Lead Removal in Aqueous Solution"** was submitted by Izzan Salwana binti Izman, in partial fulfilment of the requirements for the Degree of Bachelor of Science (Hons.) Chemistry, in the Faculty of Applied Science, and was approved by

Dr. Ruhaida binti Rusmin Supervisor B. Sc. (Hons.) Chemistry Faculty of Applied Sciences Universiti Teknologi MARA 72000 Kuala Pilah Negeri Sembilan

Dr. Siti Nor Atika binti Baharin Co-Supervisor B. Sc. (Hons.) Chemistry Faculty of Applied Sciences Universiti Teknologi MARA 72000 Kuala Pilah Negeri Sembilan

Nurul Huda Abdul Halim Project Coordinator B. Sc. (Hons.) Chemistry Faculty of Applied Sciences Universiti Teknologi MARA 72000 Kuala Pilah Negeri Sembilan Mazni Musa Head of Programme B. Sc. (Hons.) Chemistry Faculty of Applied Sciences Universiti Teknologi MARA 72000 Kuala Pilah Negeri Sembilan

Date:

TABLE OF CONTENTS

	KNOWLEDGEMENTS	Page iii		
		iv		
	TABLE OF CONTENTS LIST OF TABLES LIST OF FIGURES LIST OF ABBREVIATIONS			
LIS				
LIS				
LIS				
ABS	ABSTRACT			
ABS	STRAK	x		
CH	APTER 1 INTRODUCTION	1		
1.1	Background of study	1		
1.2	Problem statement	3		
1.3	Significant of study	4		
1.4	Objectives	5		
СН	APTER 2 LITERATURE REVIEW	6		
2.1	Toxic heavy metals	6		
2.1	2.1.1 Sources of toxic heavy metals	7		
	2.1.2 Lead	8		
2.2	Adsorption of lead	9		
2.3	Natural clay minerals	10		
	2.3.1 Kaolinite	11		
	2.3.1.1 Structural features of kaolinite	12		
2.4	Modified kaolinite clay	13		
	2.4.1 Magnetic kaolinite composite	14		
	2.4.1.1 Characterization of magnetic kaolinite composite	18		
2.5	Adsorption and desorption of magnetic clays.	20		
	2.5.1 Adsorption mechanism	20		
	2.5.2 Desorption process	21		

CHAPTER 3 METHODOLOGY		
3.1	Apparatus	23
3.2	Instrument	23
3.3	Materials and reagents	23

5.5Iviaterials and reagents233.4Research flow24

3.4.1	Preparation of kaolinite-iron oxide composite	24
3.4.2	Material characterization	25
3.4.3	Adsorption experiment	25
3.4.4	Desorption experiment	26

CH	APTER	4 RESULTS AND DISCUSSIONS	27
4.1	Chara	cterization of Kaolinite and Kaolinite Iron Oxide	27
	4.1.1	Fourier transform-infrared (FTIR) analysis	27
	4.1.2	X-ray diffractometer (XRD) analysis	29
	4.1.3	Scanning electron microscope (SEM) analysis	30
4.2	Adsor	ption studies	33
	4.2.1	Effect of pH	33
	4.2.2	Effect of time	34
	4.2.3	Effect of initial metal ion concentration	35
	4.2.4	Effect of temperature	36
4.3	Desor	ption study	37

CHAPTER 5 CONCLUSION AND RECOMMENDATION		
5.1	Conclusion	40
5.2	Recommendation	41

CITED REFERENCES	42
APPENDICES	50
CURRICULUM VITAE	61

ABSTRACT

PREPARATION OF MAGNETIC KAOLINITE COMPOSITE FOR LEAD REMOVAL IN AQUEOUS SOLUTION

Magnetic kaolinite composite was successfully synthesized using combination of kaolinite and iron oxide through co-precipitation method. The synthesized kaolinite-iron oxide (Kao-IO) and raw kaolinite (Kao) was characterized by using X-ray diffractometer (XRD), scanning electron microscope (SEM), and fourier-transform infrared spectroscopy ATR type (FTIR ATR). The Kao-IO composite was used to remove Pb²⁺ from aqueous solution through adsorption studies under various experimental conditions (pH, contact time, initial concentration of Pb solution, and temperature). Meanwhile the Pb desorption studies of Pb loaded Kao-IO were performed with different desorbing agents. The optimum experimental condition was achieved at pH 6, reaction time of 120 min at initial concentration ranged from 10 to 70 ppm. Kao-IO composite has higher adsorption capacity (30.93 mg g⁻¹) compared to Kao (25.04 mg g⁻¹). EDTA was the best desorbing agent with the highest desorption efficiency (39.18%). Overall, Kao-IO composite demonstrated high potential as suitable adsorbent to treat Pb contaminated water.