UNIVERSITI TEKNOLOGI MARA

GPR-BASED ADAPTIVE NEURO FUZZY INFERENCE SYSTEM (ANFIS) MODEL FOR DIESEL PIPELINE CORROSION

AMIR HAMZAH HIJAZI BIN ABIDIN JALI HIJAZI

Thesis submitted in partial fulfillment of the requirements for the degree of **Geomatics Science and Surveying**

Faculty of Architecture Planning and Survey

January 2019

AUTHOR'S DECLARATION

I declare that the work in this thesis was carried out in accordance with the regulations of Universiti Teknologi MARA. It is original and is the results of my own work, unless otherwise indicated or acknowledged as referenced work. This thesis has not been submitted to any other academic institution or non-academic institution for any degree or qualification.

I, hereby, acknowledge that I have been supplied with the Academic Rules and Regulations for Post Graduate, Universiti Teknologi MARA, regulating the conduct of my study and research.

Name of Student	:	Amir Hamzah Hijazi Bin Abidin Jali Hijazi
Student I.D. No.	:	2017455846
Programme	:	Bachelor Degree of Geomatics Science and Surveying – AP220
Faculty	:	Architecture Planning and Survey
Thesis	:	GPR-Based Adaptive Neuro Fuzzy Inference System (ANFIS) Model for Diesel Pipeline Corrosion

Signature of Student	:	
Date	:	January 2019

ABSTRACT

This research stimulated the investigation of using the Adaptive Neuro Fuzzy Inference System (ANFIS) model in detecting corrosion of diesel pipeline. This problem highlighted to retrieve the permittivity on contaminated soil because there were several common factors that affected dielectric permittivity such as temperature and moisture content which were causing difficulty in GPR data interpretation. This research aims to investigate the capability of ANFIS in locating the underground diesel pipeline corrosion based on GPR data. The aim of this research can be achieved by identifying three objectives for these studies. The objective is to identify the parameters involved in designing ANFIS, to identify the capabilities of ANFIS in for modeling the GPR data, and to produce an analysis of the technique for locating the corrosion in the underground pipeline. The study area was at UiTM Perlis. The experimental site designed and filled with dry sand and Jitra soil with corroded pipeline installed and diesel is inserted through the pipeline. GPR measurement carried out by using an 800MHz antenna while the temperature and soil moisture reading recorded to analyze the relationship between temperature and soil moisture towards permittivity. Dielectric permittivity of underground contaminant retrieved based on dielectric contrast in radargram, GPR signal amplitude, time travel, and electromagnetic wave velocity. The dielectric permittivity reading then analyzed using the ANFIS method. MATLAB is used to produce a model for a corroded pipeline based on the ANFIS method. This study aimed to understand and utilize the use of ANFIS in producing a model for detecting corrosion on the underground pipeline.

TABLE OF CONTENT

Page

CON	FIRMATION BY PANEL OF EXAMINERS	ii
AUT	HOR'S DECLARATION	iii
SUP	ERVISOR'S DECLARATION	iv
ABS	TRACT	v
ACK	NOWLEDGEMENT	vi
TAB	LE OF CONTENT	vii
LIST	OF FIGURES	Х
LIST	OF table	xii
LIST	T OF SYMBOLS	ii
LIST	OF ABBREVIATIONS	iii
СНА	APTER ONE	4
INTI	RODUCTION	4
1.1	Research Background	4
1.2	Problem Statement	5
1.3	Research Question	6
1.4	Objectives	6
1.5	Methodology	7
1.6	Significance of Study	8
СНА	APTER TWO	9
LITI	ERATURE REVIEW	9
2.1	Introduction	9
2.2	Adaptive Neuro Fuzzy Inference System (ANFIS)	9
	2.2.1 Parameters of ANFIS	10
	2.2.2 Fuzzy Inference System	11

	2.2.3 H	Hybrid Learning Algorithm	11	
2.3	Ground	Penetrating Radar (GPR)	12	
	2.3.1 H	Permeability	14	
	2.3.2 H	Electrical Conductivity	15	
	2.3.3 I	Dielectric Permittivity	16	
2.4	2D Data	Processing	17	
	2.4.1 I	Dynamic correction	17	
	2.4.2	Subtract-mean (dewow)	18	
	2.4.3	Curve fitting	18	
2.5	Summar	У	19	
CHA	PTER TH	IREE	20	
RESE	CARCH N	METHODOLOGY	20	
3.1	Introduc	tion	20	
3.2	Study Area			
3.3	Site Preparation for GPR Measurement			
3.4	Planning			
3.5	Frequency of GPR Transmitting			
3.6	Arrangement of Survey Line (Grid Line)			
3.7	Data Acquisition			
3.8	Reflexw	Data Processing	27	
3.9	Determi	nation of Dielectric Constant and Electrical Conductivity of Soil	29	
3.10	ANFIS a	architecture using Matlab	31	
	3.10.1	Fraining data	33	
	3.10.2 A	ANFIS Data Testing and Checking	34	
	3.10.3	Generating Fuzzy Inference System (FIS)	35	
3.11	Summar	У	37	
CHAPTER FOUR RESULT AND ANALYSIS				
1 1	T., (()	20	

4.1	Introduction	50
4.2	The Velocity and Amplitude of Different Soil by GPR Detection	38