A STUDY ON IMPACT ENERGY REQUIRED IN MECHANICAL ALLOYING (MA)

DISEDIAKAN OLEH :

SALINA BUDIN AZNIFA MAHYAM ZAHARUDIN

AUGUST 2008

Tarikh28 Ogos 2008No. Fail Projek600-IRDC/ST/FRGS 5/3/1187

Head of Research (Science & Technology) Research Management Institute (RMI) UiTM, 40450 Shah Alam, MALAYSIA

Prof./Prof. Madya/Tuan/Puan,

LAPORAN AKHIR PENYELIDIKAN "A STUDY ON IMPACT ENERGY REQUIRED IN MECHANICAL ALLOYING (MA)"

Merujuk kepada perkara di atas, bersama-sama ini disertakan 3 (tiga) naskah Laporan Akhir Penyelidikan tersebut untuk makluman pihak Prof./Prof. Madya/Tuan/Puan, .

Sekian, terima kasih.

Yang benar.

SALINA BUDIN Ketua Projek Penyelidikan

CONTENT

Acknowledgement	i	
Content	ii	
APPENDICES	iv	
List of Tables	v	
List of Figures	vi	
Abstract	vii	
CHAPTER 1 INTRODUCTION		
1.1 Background	1	
1.2 Significant of Project	2	
1.3 Objectives	3	
1.4 Scope of research		
CHAPTER 2 LITERATURE REVIEW		
2.0 Introduction	4	
2.1 History	4	
2.2 Mechanism of MA		
2.3 Collision event	8	

CHAPTER 3 THEORETICAL MODELING

3.0	5.0 Introduction			
3.1	3.1 Theoretical Modeling of Impact Energy			
	3.1.1	Collision without the presence of work materials	13	
	3.1.2	Collision with the presence of work materials	14	
3.2	Summa	ary	18	
CHAPTER 4 COMPUTER SIMULATIONS				
4.0	Introd	uction	19	
4.1	4.1 Computer simulation procedure			
4.2	1.2 Computer simulation result			
	4.2.1	Influence of ball mass	23	
	4.2.2	Influence of free falling height	26	
4.3	Sur	nmary	32	

CHAPTER 5: CONCLUSION AND RECOMMENDATION

5.1 Conclusion	34
5.2 Recommendation	35

REFFERENCES

37

ABSTRACT

In Mechanical Alloying (MA), the mixture of the work materials to be alloyed is placed in a container together with relevant milling medium. The vial and the charge materials are then moved in such a manner to create kinetic energy on the charge materials in the vial. Upon the collisions of the charge materials against each other as well as against the wall of the vial, kinetic energy is then converted into impact energy. This impact energy is than absorbed by the work materials for repeatedly flattened, cold welded, fractured and rewelded, which is an important mechanisms in MA. Since MA process utilizes energy generated by impact, it is important to understand the way on how kinetic energy of charge materials is transferred into impact energy. This report present a model of energy conversion and impact energy generation during the collision based on free falling experiment, which is a closest resemblance to the direct collision between ball and inner wall of the vial.