MODELING OF ENERGY TRENDING BASED ON PRESSURE, TEMPERATURE AND VARIOUS GAS COMPONENTS OF NATURAL GAS TO PREDICT POTENTIAL BILLING ERROR BY MEANS OF ARTIFICIAL INTELLIGENT TECHNIQUES AND REGRESSION METHODS

BY:

NURHANI KASUAN SAIFUL ZAIMY YAHAYA NOFRI YENITA DAHLAN

AUGUST 2009

TABLE OF CONTENT

AC	KNOWL	EDGEMENTS	
TAE	BLE OF	CONTENT	ii
LIST	Г OF FIG	GURES	v
LIST	Г OF TA	BLES	vii
LIST	Г OF SY	MBOLS AND ABBREVIATIONS	viii
ABS	STRACT	`	ix
CHA	APTER 1		
INT	RODUC	TION	
1.1	Mode	eling	1
1.2	Forec	asting Energy Trending for Natural Gas	1
1.3	Aims of Study		
1.4	Study Outline		2
1.5	Organ	nization of the Thesis	3
CHA	PTER 2		
LITE	ERATUF	RE REVIEW	
2.1	Energ	y by Natural Gas	4
	2.1.1	Error Costing of Energy	6
	2.1.2	Pipeline Gas Metering Station	7
	2.1.3	Inputs Terminology	9
	2.1.4	Significant Formulae for Energy Calculation 10	
2.2	Neura	l Network	11
	2.2.1	History of Neural Network	11
	2.2.2	Artificial Neural Network	13
	2.2.3	Neural Network Architecture	15
	2.2.4	Single Layer Feedforward Network	15

	2.2.5	Multilayered Feedforward Neural Network	16
	2.2.6	Hybrid Multilayered Perceptron Network (HMLP)	18
	2.2.7	Training Algorithm	20
	2.2.8	Recursive Prediction Error (RPE)	20
	2.2.9	RPE for HMLP Network	22
2.3	Syste	m Identification	22
	2.3.1	System Identification Model	23
	2.3.2	Parametric Model Structure	24
	2.3.3	Plant Model	24
	2.3.4	System Identification Approach	25
		2.3.4.1 Observation	25
		2.3.4.2 Model Structure Selection	26
		2.3.4.3 Model Estimation	26
		2.3.4.4 Model Validation	26
		2.3.4.5 Model Application	26
	2.3.5	Matlab's System Identification Toolbox	26
2.4	Regre	ssion Model	27
	2.4.1	Linear Regression	27
	2.4.2	Scatter Diagram	30
	2.4.3	R-Squared	31
	2.4.4	Residual	33
	2.4.5	Outliers	34
	2.4.6	Statistical Package for the Social Sciences (SPSS)	35
2.5	Summ	ary	36
CHA	PTER 3		

RESEARCH METHODOLOGY

3.1	Introduction	37
3.2	Data Collection	37
3.3	Modeling by Means of Neural Network	37
	3.3.1 Optimization Process	38

	3.3.2	HMLP Structure	38
	3.3.3	Structured Flowchart	40
3.4	Modeling by Means of System Identification		43
	3.4.1	Equation Development	43
	3.4.2	Model Testing	44
	3.4.3	Confirmation of Equation Model	44
	3.4.4	Identification Model Procedures using MATLAB	44
3.5	Model	ling by Means of Regression Method	50
	3.5.1	Model Development of Energy Equation	50
	3.5.2	Regression Model Strategy	51
	3.5.3	Filtering Out the Influential Outliers	52
	3.5.4	Data Training and Model Selection	55
	3.5.5	Confirmation of the Model	58
3.6	Summ	ary	58

CHAPTER 4

RESULTS AND DISCUSSION

4.1	Introduction	
4.2	Energy Modeling Outcomes using HMLP Network	59
4.3	Energy Modeling Outcomes using System Identification	61
	4.3.1 Input Variables	61
	4.3.2 System Identification using MATLAB	63
4.4	Outcomes of Regression Technique	67
4.5	Discussion	

CHAPTER 5

CONCLUSION	AND RECOM	IMENDATION

5.1	Conclusion	75
5.2	Recommendation	77

REFERENCES	78
------------	----

ABSTRACT

In the recent global issues, oil and gas prices have proven to be a valuable commodity. This so called 'black-gold' is finite and there will be time when these valuable resources will deplete and vanish from other earth reservoir. Due to this scenario, every molecule matters. Natural gas processing and transmission network plays an important role in ensuring our country energy requirements are meet. One of the important facilities in the network is the metering system. It acts as a custody transfer point between both seller and buyer and governs by specific regulatory requirements. The reliability, integrity and accuracy of such facilities are critical since the energy calculation obtained will be use for customer billing purposes. A slight error of energy reckoning will lead to a significant loss in profit. Till now, there is no specific methodology to double check the reliability of data produced although one knows that each individual equipment for such facilities have a clear traceability line to international measurement standard. This thesis proposed a new alternative approach to predict the energy by modeling energy trending using Artificial Neural Network (ANN). A Hybrid Multilayered Perceptron (HMLP) network is chosen to perform the energy trending. The execution result of ANN has successfully modeled energy pattern with accuracy is up to 100%. Other conventional modeling methods also employed i.e. Regression Technique and System Identification to compare the performance of ANN.