REMEDIATION OF NAPHTHALENE FROM SYNTHETIC WASTE WATER USING RICE HUSK AND RICE STRAW AS BIO-SORBENT

SITI HAZIRAH BINTI MD RUDIN

Final Year Project Report Submitted in Partial Fulfillment of the Requirement for the Degree of Bachelor Sciences (Hons) Biology in the Faculty of Applied Sciences Universiti Teknologi MARA

JANUARY 2019

This Final Year Project Report entitled "**Remediation of Naphthalene from Synthetic Waste Water Using Rice Husk and Rice Straw as Bio-Sorbent**" was submitted by Siti Hazirah binti Md Rudin, in partial fulfillment of the requirements for the Degree of Bachelor of Science (Hons.) Biology, in the Faculty of Applied Sciences, and was approved by

Mohd Zaini bin Nawahwi Supervisor B. Sc. (Hons.) Biology Faculty of Applied Sciences Universiti Teknologi MARA 72000 Kuala Pilah Negeri Sembilan

Siti Norazura binti Jamal Project Coordinator B. Sc. (Hons.) Biology Faculty of Applied Sciences Universiti Teknologi MARA 72000 Kuala Pilah Negeri Sembilan

Dr. Aslizah binti Mohd Aris Head of School B. Sc. (Hons.) Biology Faculty of Applied Sciences Universiti Teknologi MARA 72000 Kuala Pilah Negeri Sembilan

Date:

TABLE OF CONTENTS

PA	GE
	UL

ACKNOWLEDGEMENT	111
TABLE OF CONTENTS	iv
LIST OF TABLE	vi
LIST OF FIGURES	vii
LIST OF ABBREVIATIONS	viii
ABSTRACT	ix
ABSTRAK	Х

CHAPTER 1: INTRODUCTION

1.1	Background Study	1
1.2	Problem Statement	2
1.3	Significance of the Study	3
1.4	Objective of the Study	4

CHAPTER 2: LITERATURE REVIEW

2.1	Rice Husk and Rice Straw		5
2.2	Statistical Data of PAHs Concentration		
2.3	B Polycyclic Aromatic Hydrocarbon		8
2.4	Naphthalene		
2.5	.5 Factors Affecting PAHs Adsorption		
	2.5.1	Salinity	9
	2.5.2	Contact Time	9
	2.5.3	Initial Concentration	10
	2.5.4	Adsorbent Dosage	10
	2.5.5	Temperature	11
	2.5.6	Agitation Speed	11
2.6	Optimi	zation of Naphthalene Adsorption	12
2.7	⁷ Summary of biosorption by different biomass 12		

CHAPTER 3: METHODOLOGY

3.1	3.1 Materials		14
	3.1.1	Raw Material	14

	3.1.2	Chemicals	14
	3.1.3	Apparatus	14
3.2	Method	S	15
	3.2.1	Sample Collection	15
	3.2.2	Preparation of the Bio-sorbent	15
	3.2.3	Preparation of Activated Carbon	16
	3.2.4	Preparation of the Synthetic Waste Water	17
	3.2.5	Calibration Curve for Naphthalene	17
	3.2.6	Optimization of Naphthalene Adsorption	18
	3.2.7	Batch Adsorption Experiments	19
3.3	Fourier	Transform Infrared (FTIR) Analysis	19
3.4	Determ	ination of Naphthalene Adsorption	20
3.5	Statistic	al Analysis	21

CHAPTER 4: RESULT AND DISCUSSION

4.1	FTIR Analysis of Rice Husk and Rice Straw		
4.2	2 Screening of Naphthalene Adsorption		
4.3 Optimization of Naphthalene Adsorption			25
	4.3.1	Adsorbent Dosage	25
	4.3.2	Initial Concentration	27
	4.3.3	Contact Time	30
	4.3.4	Agitation Speed	32
4.4	Batch A	Adsorption Experiment	34

CHAPTER 5: CONCLUSION AND RECOMMENDATIONS 37

CITED REFERENCES	38
APPENDICES	44
CURRICULUM VITAE	53

ABSTRACT

REMEDIATION OF NAPHTHALENE FROM SYNTHETIC WASTE WATER USING RICE HUSK AND RICE STRAW AS BIO-SORBENT

Naphthalene is two ringed PAHs which mainly formed and accumulated in the surface of water. It is one of the organic pollutant, insoluble in water and difficult to remove. However, previous study stated that adsorption is the most efficient method. In addition, adsorption by using agricultural waste such as rice husk and rice straw are effective and economical way for removing PAHs. Rice husk and rice straw are agriculture waste and inexpensive bio-sorbent material. The aim of this study was to compare the potential activated carbon from rice husk and rice straw in eliminating the naphthalene from synthetic waste water. The sample with highest percentage of naphthalene adsorption was used to analyze the effect of adsorbent dosage, initial concentration of naphthalene, contact time and agitation speed on naphthalene adsorption. The most optimized parameter were continued for batch adsorption experiment. Based on this experiment, it was found that the percentage of naphthalene adsorption was at the highest by using AC-RH (96.20%). The naphthalene adsorption in synthetic waste water continuously increased with increasing of adsorbent dosage (40mg), contact time (80min), and initial concentration of naphthalene (25mg/L). The highest percentage of naphthalene adsorption for batch adsorption experiment was 97.94%. The results were analyzed using the statistical analysis. It showed there was significant difference between them (p<0.005). This study demonstrate that rice husk and rice straw which are the agriculture waste could be used to adsorb naphthalene as they have high biosorption capacity, low cost, unique composition which make them good biosorbent for removing naphthalene from water.