THERMO OSMOTIC EFFECT OF ELECTROSPUN PVDF MEMBRANE

MOHAMMAD AMIERZA IKHMAR BIN AZMI

Final Year Project Report Submitted in Partial Fulfilment of the Requirements for the Degree of Bachelor of Science (Hons.) Physics in the Faculty of Applied Sciences Universiti Teknologi MARA

JANUARY 2020

TABLE OF CONTENTS

		Page	
ACKNOWLEDGEMENT			
TABLE OF CONTENTS			
LIST OF FIGURES			
LIST OF TABLES			
LIST	OF ABBREVIATIONS	vi	
ABST	RACT	ii	
CHAPTER 1 INTRODUCTION			
1.1	Background of the study	1	
1.2	Problem statement	3	
1.3	Significant of study	4	
1.4	Objective of study	4	
CHAPTER 2 LITERATURE REVIEW			
2.1	Introduction	6	
2.2	PVDF materials	9	
2.3	Hydrophobic	11	
2.4	Temperature gradient	12	
2.5	Electrospinning	13	
2.6	Osmotic mechanism	14	
СНАР	TER 3 METHODOLOGY	17	
3 1	Introduction	17	
3.2	Flow chart of the experiment	17	
33	Synthesize of PVDF membrane varying porosity	18	
5.5	3 3.1 Synthesis of PVDF solution	18	
	3 3 2 Preparation of Electrosnun PVDE using Electro spinning	10	
	machine	19	
	3.3.3 Characterization of membrane	20	
3.4	List of chemicals	20	
3.5	Experiment set up	21	
2.2			
CHAPTER 4 DISCUSSION 22			
4.1	FTiR	22	
4.2	Optical Microscopes	24	
4.3	Scanning Electron Microscopes (SEM)	25	
4.4	Result of the osmosis experiment	26	

LIST OF FIGURES

FIGURE	CAPTION PAGE	E
1.	Figure 1: Osmosis effect	1
2.	Figure 2: PVDF phases depending on its chain	10
3.	Figure 3: Angle of hydrophobocity	12
4.	Figure 4: Polarization occur between the membrane	15
5.	Figure 5: The flow chart of this experiment	18
6.	Figure 6: Electrospinning machine	20
7.	Figure 7: Experiment set up	21
8.	Figure 8: FTIR result	23
9.	Figure 9: Range of FTIR result from 2000cm ⁻¹ to 500cm with Beta phase	1 ⁻¹ 23
10.	Figure 10: Sample under optical microscope	25
11.	Figure 11: Sample under Scanning Electron Microscope	26
12.	Figure 12: Histogram of Volume vs. Voltage	27
13.	Figure 13: Histogram of Pressure vs. Voltage	27

ABSTRACT

The effect of thermo osmosis is critical to the osmosis based renewable energy harvesting. Using this technique the fluid is forced another reservoir by using the osmosis effect, temperature into gradient and pressure exerted to produce energy. In this study, we using the osmosis effect enhance by the temperature gradient to study the dynamics of fluid across the membranes for heat harvesting energy with different porosity. The materials that have been used to create the membranes are polyvinylidene fluoride (PVDF) because it has high thermal resistivity, high chemical resistance and good mechanical properties. Electrospinning machine was used to create the membranes with different porosity needed. The previous study show electrospinning machine will creates a beta phase of PVDF electro spun. From the experiment, sample of 10V shows higher efficiency in the dynamic of fluid pass through the membrane which is 0.009 m^3 change in volume with 1.9485x10⁻⁵ N of the osmotic pressure. This is because the formation of beads a less compared to 14V and 18V where beads almost in every topology of membranes. The formation of fibers in the samples of 10V, 14V and 18V are well distributed by using electrospinning machine and we can see the porosity increased as the voltage increase.

CHAPTER 1

INTRODUCTION

1.1 Background of the study

Osmosis is a passive transport which requires no energy to be applied that relates to the flow of fluid from high concentration solvent to low concentration solvent across the semi permeable membrane. The mechanism is shown in Figure 1. It occurs because of the concentration gradient between two reservoirs making the effect to occur to balance in between the two regions.

Figure 1: Osmosis effect