STRUCTURAL AND ELECTRICAL PROPERTIES OF PURE ZINC OXIDE AND ZINC OXIDE WITH TITANIUM DIOXIDE FOR DYE-SENSITIZED SOLAR CELL PERFORMANCE

MYZATUL AZLYIN BINTI MUHAMAD

Final Year Project Report Submitted in Partial Fulfilment of the Requirements for the Degree of Bachelor of Science (Homs.) Physic In the Faculty of Applied Sciences Universiti Teknologi MARA

JANUARY 2020

TABLE OF CONTENTS

Page

ACKNOWLEDGMENTS	iii
TABLE OF CONTENTS	iv
LIST OF TABLES	vi
LIST OF FIGURES	vii
LIST OF ABBREVIATIONS	viii
ABSTRACT	ix
ABSTRAK	х

CHAPTER 1 INTRODUCTION

Background of the study	1
1.1.1 Zinc Oxide (ZnO)	4
Problem statement	6
Significant of study	7
Objectives of study	7
	1.1.1 Zinc Oxide (ZnO) Problem statement Significant of study

CHAPTER 2 LITERATURE REVIEW

2.1	Introduction	8
2.2	Zinc Oxide as a photoanode	8
2.3	Zinc Oxide/Titanium as a photoanode	14
2.4	Summary	17

CHAPTER 3 METHODOLOGY

3.1	Introd	uction	18
3.2	Mater	ials	18
3.3	Cleaning the glass substrate		20
3.4	Seed layer preparation		22
3.5	Zinc (Dxide/Titanium Dioxide Preparation	24
3.6	Chara	cterization	26
	3.6.1	X-Ray Diffraction (XRD)	26
	3.6.2	Ultraviolet Visible (UV-Vis)	28
	3.6.3	Current-Voltage Characterization (I-V)	30

CHAPTER 4 RESULT AND DISCUSSION

4.1	Introduction	32
4.2	Microstructural properties of pure ZnO and ZnO/TiO ₂	32
	4.2.1 X-Ray Diffraction	32
4.3	Ultraviolet Visible analysis	37
	4.3.1 Transmittance properties	37
	4.3.2 Absorbance properties	40
4.4	Current-Voltage(I-V) curve	42
4.5	Summary Findings	48
CHAF	TER 5 CONCLUSION AND RECOMMENDATION	
5.1	Introduction	49
5.2	Conclusion	49
5.3	Recommendation	50
CITE	D REFERENCES	51
APPE	NDICES	54

CURRICULUM VITAE	57

LIST OF FIGURE

Figure	Caption	Page
3.3.1	Flow chart cleaning the glass substrate	21
3.4.1	Flow chart seed layer preparation	23
3.5.1	Flow chart ZnO/TiO ₂ preparation	25
3.6.1	X-Ray Diffraction (XRD) equipment	27
3.6.2	Ultraviolet Visible (UV-Vis) Equipment	29
3.6.3(a)	Bench top turbo thin film	30
3.6.3(b)	Current-Voltage characterization	31
4.2.1	XRD pattern of pure ZnO and ZnO/TiO ₂ nanorods at various concentration of TiO_2	34
4.3.1	UV-Vis transmittance of undoped ZnO and ZnO doped with various concentration of TiO_2	39
4.3.2	UV-Vis absorbance of undoped ZnO and ZnO doped with various concentration of TiO_2	41
4.4	I-V curve of undoped ZnO and ZnO doped with TiO_2	44

ABSTRACT

STRUCTURAL AND ELECTRICAL PROPERTIES OF PURE ZINC OXIDE AND ZINC OXIDE WITH TITANIUM DIOXIDE FOR DYE-SENSITIZED SOLAR CELL PERFORMANCE

Zinc oxide (ZnO) is a as the semiconductor material in dye-sensitized solar cell (DSSC). In this research, the structural and electrical properties of Zinc Oxide thin film doped with titanium dioxide (TiO₂) has been investigated. The sample undoped ZnO and ZnO doped with 1wt%, 3wt%, 5wt%, 7wt% and 9wt% of TiO₂ were prepared using solution immersion method. All samples have been characterized using X-Ray Diffraction (XRD), Ultraviolet Visible (UV-Vis) and Current-Voltage characterization (I-V). Diffraction peak for all samples from XRD result shows the presence of dominant ZnO phase at (002) plane with hexagonal wurtzite structure. The sample prepared with 5wt% of TiO₂ has the highest transmittance range while the sample with 7wt% of TiO₂ has the highest absorbance in UV analysis. The resistance value for all samples was obtained from the analysis of I-V curve. The resistance value is decrease as the concentration of TiO₂ increase.