EFFECTS OF ANTIMONY-DOPED ON YTTRIUM-SITE OF YBCO-123 USING DENSITY FUNCTIONAL THEORY VIA FIRST PRINCIPLE STUDY

NURAINI NAJIHAH BINTI ZULKIFLI

Final Year Project Report Submitted in Partial Fulfilment of the Requirements for the Degree of Bachelor of Science (Hons.) Physics in the Faculty of Applied Sciences Universiti Teknologi MARA

JANUARY 2020

TABLE OF CONTENTS

			Page	
ACK	ACKNOWLEDGEMENTS			
	ABLE OF CONTENTS			
LIST	Γ OF TA	BLES	v	
LIST	r of fic	GURES	vi	
LIST	ST OF ABBREVIATIONS			
ABS	TRACT	ix		
ABS	TRAK		X	
CHA	APTER 1	INTRODUCTION	1	
1.1		ground of the study	1	
1.2	_	em Statement	3	
1.3	Signif	icance of Study	4	
1.4	Objec	tives of study	5	
CHA	APTER 2	LITERATURE REVIEW	6	
2.1		conductor	6	
2.2	-	leissner Effect	7	
2.3	YBCC	O Superconductor	8	
2.4	Antim	nony dopant	10	
2.5	Y-site		10	
2.6	Comp	Computational Method		
		First Principle Study	11	
	2.6.2	Density Functional Theory	11	
	2.6.3	CASTEP Code	13	
	2.6.4	Calculation And Analysis	14	
CHA	APTER 3	3 METHODOLOGY	20	
3.1	Comp	20		
J.,	3.1.1	22		
	3.1.2		23	
	3.1.3		25	
	3.1.4	Step 4 – Analysis	26	

CHA	APTER 4	RESULTS AND DISCUSSION	27		
4.1	Introd	Introduction			
4.2	Struct	Structural Properties			
	4.2.1	Lattice Parameter	29		
4.3	Electronic Properties				
	4.3.1	Band Structure	31		
	4.3.2	Density of State (DOS)	36		
	4.3.3	Bond Length	42		
	4.3.4	Electron Density Difference (EDD)	44		
CHA	APTER :	5 CONCLUSION AND RECOMMENDATIONS	48		
5.1	Introd	luction	48		
5.2	Sumn	nary	48		
5.3	Future	e Research	50		
CIT	ED REF	ERENCES	51		
CUR	CURRICULUM VITAE				

LIST OF FIGURES

Figures	Caption	Page
Figure 2.1	Transition to zero-resistance for superconductor and perfect	8
	diamagnetic	
Figure 3.1	Computational method for molecular modelling	21
Figure 3.2	Molecular modelling (in most cases) involves four main	22
	steps	
Figure 4.1	The crystal structure of pure $Y_{1-x}Ba_2Cu_3O_\delta$	28
Figure 4.2	Optimized crystal structure of $Y_{1-x}Ba_2Cu_3O_{\delta}$	28
Figure 4.3	Band Structure of Sb-dopant at Y-site of Y _{1-x} Sb _x Ba ₂ Cu ₃ O _δ	34
	with $x = a$) 0.0625, b) 0.1250, c) 0.1875, d) 0.2500, e)	
	0.3125, f) 0.3750, g) 0.4375 and h) 0.5000	
Figure 4.4	Density of States of Sb-dopant at Y-site of $Y_{1-x}Sb_xBa_2Cu_3O_\delta$	36
	with $x = 0.0625$, 0.1250, 0.1875, 0.2500, 0.3125, 0.3750,	
	0.4375 and 0.5000	
Figure 4.5	Total density of States of Sb-dopant at Y-site of Y ₁ .	37
	$_{x}Sb_{x}Ba_{2}Cu_{3}O_{\delta}$ with $x = 0.0625, 0.1250, 0.1875, 0.2500,$	
	0.3125, 0.3750, 0.4375 and 0.5000	

ABSTRACT

EFFECTS OF ANTIMONY-DOPANT ON YTTRIUM SITE OF YBCO-123 USING DENSITY FUNCTIONAL THEORY VIA FIRST PRINCIPLE STUDY

Antimony-doped on Yttrium site of YBa₂Cu₃O_δ was examined using Density Functional Theory via First Principle Study. The effect of Sb doping on YBCO-123 has been studied via computational simulation to determine the structural properties and electronic properties. From the simulation of Material Studio CASTEP software through Density Functional Theory, the optimized crystal structure has been developed. Generally, the lattice parameters results shows that the doped samples did not differ much from the standard sample for x = 0.0625until x = 0.1875 except for Sb doped of x = 0.2500 until x = 0.5000 that displayed shortening of a-parameter and b-parameter while elongating c-parameter. The sample has a crystal structure of orthorhombic as they have different lattice parameter where $a \neq b \neq c$. For the electronic band structure, the addition of Sb (III) have a negligible effect on the main crystalline structure of the YBCO-123 specially at low concentration from doping x = 0.0625 to x = 0.2500 but start to be unstable specially at high concentration from doping x = 0.3125 to x = 0.5000 The results were analysed that the states of existing holes in Y_{1-x}Sb_xBa₂Cu₃O_δ are obtained by investigating the states above the Fermi level, not below it. The density of states graph showed that the electron near and below Fermi level was highly concentrated which are involved in the formation of superconducting properties. The charge density for one electron per unit cell above Fermi level shows that holes exist mainly in the Cu-O₂ plane. The energy shifts observed via total and partial density of state at Cu 3d and O 2p orbital towards the Fermi level with different concentration of dopant confirms the superconducting ability and its electronic behaviour.