PHYSICAL AND STRUCTURAL PROPERTIES OF ERBIUM DOPED TELLURITE GLASS EMBEDDED WITH ZINC OXIDE NANOPARTICLES

UMMI KALTHUM BINTI ABD RAHMAN

Final Year Project Report Submitted in Partial Fulfilment of the Requirements for the Degree of Bachelor of Science (Hons.) Physics in the Faculty of Applied Sciences Universiti Teknologi MARA

JANUARY 2020

TABLE OF CONTENTS

	Page
ACKNOWLEDGMENTS	iii
TABLE OF CONTENTS	iv
LIST OF TABLES	vi
LIST OF FIGURES	vii
LIST OF ABBREVATIONS	ix
ABSRACT	х
ABSTRAK	xi

CHAPTER 1 INTRODUCTION

1.1	Background of study	1
1.2	Problem statement	4
1.3	Objectives of study	4
1.4	Scope of study	5
1.4	Significance of study	5

CHAPTER 2 LITERATURE REVIEW

2.1	Random network theory	
	2.1.1 Network former	7
	2.1.2 Network modifier	8
2.2	Formation of glass	9
2.3	Tellurite glass	11
2.4	Effect of rare earth dopant materials on tellurite glass	12
2.5	Zinc oxide as nanoparticles	13

CHAPTER 3 METHODOLOGY

3.1	Glass preparation		14
3.2	Metho	ds	16
	3.2.1	Preparation of samples	16
3.3	Charac	cterization of samples	19
	3.3.1	Density and molar volume	19
	3.3.2	Fourier – Transform Infrared (FTIR) Analysis	20
	3.3.3	Raman Spectroscopy	23
	3.3.4	X-Ray Diffraction	24

CHAP	ΓER 4 RESULTS AND DISCUSSION
4.1	Introduction

4.2

Introdu	uction	25
Result	s and discussion	25
4.2.1	Physical properties	25
4.2.2	Density and molar volume	27
4.2.3	X-ray diffraction	30
4.2.4	FTIR analysis	31
4.2.5	Raman spectroscopy	33

CHAPTER 5 CONCLUSION AND RECOMMENDATIONS

5.1	Conclusion	35
5.2	Recommendations	36
CITI	ED REFERENCES	37
APP	ENDICES	39
CUR	RICULUM VITAE	41

LIST OF TABLE

Table	Caption	Page
2.4	Density and molar volume of zinc tellurite glasses doped with erbium oxide, $[(TeO_2)_{0.7}(ZnO)_{0.3}]_{1-x}$ $(Er_2O_3)_x$.	12
3.1	Mass of chemical used for series 1	14
3.2	Mass of chemical used for series 2	15
3.3	Mol % of chemical used for series 1	15
3.4	Mol % of chemical used for series 2	15
4.1	The glass composition with physical appearance for series 1	26
4.2	The glass composition with physical appearance for series 2	26
4.3	The densities and molar volume for Er_2O_3 doped tellurite glass.	28
4.4	The densities and molar volume for for Er_2O_3 doped tellurite glass containing ZnO NPs.	28
4.5	The assignment of infrared transmission of erbium doped tellurite glass embedded with ZnO NPs.	32

ABSTRACT

PHYSICAL AND STRUCTURAL PROPERTIES OF ERBIUM DOPED TELLURITE GLASS EMBEDDED WITH ZINC OXIDE NANOPARTICLES

Two series of tellurite glass were prepared by using melt-quenching techniques with the composition of (85-x)TeO₂-10Na₂O-3MgO-2 Li₂CO₃-xEr₂O₃ and (84.5y)TeO₂-10 Na₂O -3MgO-2 Li₂CO₃-0.5 Er₂O₃-yZnO where x = 0, 0.5, 1.0, 1.5, 2.0mol% and y=0, 0.25, 0.50, 0.75 and 1.0 mol%. From the study, the physical properties have been measured in terms of density and molar volume. The structural properties of the glasses were determined by using Fourier Transform Infrared (FTIR) and Raman spectroscopy. The amorphosity of the glass is confirmed through X-ray Diffraction (XRD). The glass density and molar volume of different Er_2O_3 concentration are found in the range of (4.841-4.889) g/cm³ and (30.073-30.477) cm³/mol respectively. Meanwhile, the glass density and molar volume of different ZnO NPs concentration are found in the range (4.857-4.802) g/cm³ and (29.951-30.171) cm³/mol respectively. From FTIR, the absorption band for series 1 and series 2 show peaks at range from (400-500) cm⁻¹, (600-640) cm⁻¹ and (680-700) cm⁻¹. Meanwhile, the Raman spectroscopy band that indicate the structural arrangements of Te – units are shown at 460 cm⁻¹, 480 cm⁻¹, 510 cm⁻¹, 680 cm⁻¹ and 780 cm⁻¹ for series 1. Meanwhile, for series 2, it has been observed at 450 cm⁻¹, 500 cm⁻¹, 510 cm⁻¹, 680 cm⁻¹ and 750 cm⁻¹.