EFFECTS OF ANTIMONY-DOPED ON BARIUM-SITE OF YBCO-123 USING DENSITY FUNCTIONAL THEORY VIA FIRST PRINCIPLE STUDY

NURHAFIZHAH BINTI MOHD RAZALI

Final Year Project Report Submitted in Partial Fulfilment of the Requirements for the Degree of Bachelor of Science (Hons.) Pysics in the Faculty of Applied Sciences Universiti Teknologi MARA

JANUARY 2020

TABLE OF CONTENTS

			Page
ACK	NOWL	EDGEMENTS	iii
TABLE OF CONTENTS LIST OF TABLES		iv	
		vi	
LIST	COF FI	GURES	vii
LIST OF ABBREVIATIONS ABSTRACT		viii	
		ix	
ABS	TRAK		х
CHA	APTER 1	1 INTRODUCTION	1
1.1	Backg	ground of the study	1
1.2	Probl	em statement	2
1.3	Signif	ficant of study	2
1.4	Objec	tives of study	3
CHA	PTER 2	2 LITERATURE REVIEW	4
2.1	Super	conductor	4
2.2	YBC	O superconductor	6
2.3	Antin	nony,Sb Dopant	7
2.4	Bariu	m,Ba Site	9
2.5	Comp	outational Method	9
	2.5.1	First Principle Study	10
	2.5.2	Density Functional Theory (DFT)	11
	2.5.3	CASTEP Code	12
	2.5.4	Calculation and Analysis	13
		2.5.4.1 Band Structure	13
		2.5.4.2 Density of States	15
		2.5.4.3 Lattice Parameters and Cell Volume	15

CHAPTER 3 METHODOLOGY		17
3.1	Computational Method (Flow of Method)	17
	3.1.1 Building Crystal Structure (Step 1)	19
	3.1.2 Model Refinement (Step 2)	19

3.1.3	Calculation of Material Behaviour (Step 3)	20
3.1.4	Analysis (Step 4)	20

СНА	PTER 4 RESULTS AND DISCUSSION	21
4.1	Introduction	21
4.2	Structural Properties	21
	4.2.1 Lattice Parameter	21
	4.2.2 Bond Length	23
4.3	Electronic Properties	23
	4.3.1 Density of states	28
	4.3.2 Partial Density of States	25
	4.3.3 Energy Band Structure	28
	4.3.4 Electron Density Difference (EDD)	30

СНАР	TER 5 CONCLUSION AND RECOMMENDATIONS	34
5.1	Introduction	34
5.2	Conclusion	34
5.3	Recommendation	35

CITED REFERENCES	36
CURRICULUM VITAE	38

LIST OF FIGURES

Figure	Caption	Page
2.1	Type 2 layered cuprate	6
2.2	Behaviour of band structure between metal, semiconductor and insulator	14
3.1	Flow chart of computational method with details and properties for the first principles calculations.	18
4.1	Density of states of Sb-doped at Ba-site of $YBa_{2-x}Sb_xCu_3O_\delta$ with x = 0.0625, 0.1250, 0.1875, 0.2500, 0.3125, 0.3750, 0.4375 and 0.500.	24
4.2	Density of states of Sb-doped at Ba-site of $YBa_{2-x}Sb_xCu_3O_\delta$ with x = 0.0625, 0.1250, 0.1875, 0.2500, 0.3125, 0.3750, 0.4375 and 0.500.	25
4.3	Partial Density of State (a) and (b) of Cu 3 <i>d</i> respectively for Sb-doped at Ba-site YBa _{2-x} Sb _x Cu ₃ O _{δ} with x = 0.0625, 0.1250, 0.1875, 0.2500, 0.3125, 0.3750, 0.4375 and 0.500.	26
4.4	Partial Density of State (a) and (b) of O 2 <i>p</i> respectively for Sb-doped at Ba-site YBa _{2-x} Sb _x Cu ₃ O _{δ} with x = 0.0625, 0.1250, 0.1875, 0.2500, 0.3125, 0.3750, 0.4375 and 0.500.	27
4.5	Band structure of Sb-doped at Ba-site of $YBa_{2-x}Sb_xCu_3O_\delta$ with $x = (a)0.0625$, (b)0.1250, (c)0.1875, (d)0.2500, (e) 0.3125, (f)0.3750, (g)0.4375 and (h)0.500.	29
4.6	Electron density difference at the cross section for Sb-dopant at Ba-site of YBa _{2-x} Sb _x Cu ₃ O _{δ} with x = (a)0.0625, (b)0.1250, (c)0.1875, (d)0.2500, (e) 0.3125, (f)0.3750, (g)0.4375 and (h)0.500.	33

ABSTRACT

EFFECTS OF ANTIMONY-DOPED ON BARIUM-SITE OF YBCO-123 USING DENSITY FUNCTIONAL THEORY VIA FIRST PRINCIPLE STUDY

The effect of Antimony,Sb doped on Barium,Ba site of YBa_{2-x}Sb_xCu₃O_δ superconductor have been studied using density functional theory via first principle study. The superconducting properties were investigated in computer simulation. The computer simulation used to determine the crystalline structure, band structure, density of states, the electron density and bond length between the Cu-O chain and CuO₂ plane. Generally, the YBa_{2-x}Sb_xCu₃O_δ has orthorhombic crystal structure since the value of a, b and c are not same. From the band structure, the largest band gap is when x = 0.5000 where the band gap is slowly increasing between conduction band and valence band. Next, in the density of states, the electrons are more concentrated towards Fermi level. In the electron density differences and bond length, the effect of electron contribution by Cu and O were observed. From all result above, the obvious modification happened when the concentration of Sb is x = 0.5000. From the observation when the concentration is x = 0.5000, the YBa_{2-x}Sb_xCu₃O_δ is over-doped with Antimony.