THE INFLUENCE OF ELECTROLYTE ON THE ELECTROCHEMICAL PROPERTIES OF REDUCED GRAPHENE OXIDE/NICKEL – BASED TERNARY NANOCOMPOSITE

DANIEL FAZLAN BIN ATAN

Final Year Project Report Submitted in Partial Fulfilment of the Requirements for the Degree of Bachelor of Science (Hons.) Physics in the Faculty of Applied Sciences Universiti Teknologi MARA

JANUARY 2020

TABLE OF CONTENTS

		Page
ACK	KNOWLEDGEMENTS	iii
TAB	BLE OF CONTENTS	iv
LIST	Г OF TABLES	vi
LIST OF FIGURES LIST OF ABBREVIATIONS ABSTRACT		vii
		viii
		ix
ABS	TRAK	X
СНА	APTER 1 INTRODUCTION	1
1.1	Background of study	1
1.2	Problem statement	3
1.3	Significant of study	4
1.4	Objectives of study	5
CHA	APTER 2 LITERATURE REVIEW	6
2.1	Introduction	6
2.2	Supercapacitor	6
2.3	Supercapacitor performance evaluation	9
	2.3.1 Capacitance	9
	2.3.2 Energy density and power density	10
	2.3.3 Equivalent series resistance	11
2.4	Electrolyte	12
	2.4.1 Acid electrolyte	13
	2.4.2 Alkaline electrolyte	16
	2.4.3 Neutral electrolyte	16
CILA	ADTED 2 METHODOL OCV	17
	AF IER S MEINUDULUGY	I / 17
3.I 2.2	Metoriala	I / 19
3.Z	Materials	18
3.3	2.2.1 Cuello voltoremetry	18
	3.3.1 Cyclic voltammetry	19
	3.3.2 Working electrode	22
	3.3.3 Keterence electrode	23
~ 4	3.3.4 Counter electrode	23
3.4	Materials and Reagent	24

3.4.1	Preparation of sulphuric acid	24
3.4.2	Preparation of potassium hydroxide	25
3.4.3	Preparation of sodium hydroxide	25
3.4.4	Preparation of 10 %, 20 % and 30 % of rGO/Ni	25

CHAI	PTER 4	RESULTS AND DISCUSSION	26
4.1	Specif	ic capacitance	26
4.2	The effect of electrolyte on the specific capacitance of rGO/Ni		27
	4.2.1	10 % of Nickel loading	27
	4.2.2	20 % of Nickel loading	31
	4.2.3	30 % of Nickel loading	34
CHA	PTER 5	CONCLUSION AND RECOMMENDATIONS	38

CHAP	TER 5 CONCLUSION AND RECOMMENDATIONS	38
5.1	Summary	38
5.2	Future research	39

CITED REFERENCES	41
CURRICULUM VITAE	43

LIST OF FIGURES

Figure	Caption Pa	ige
Figure 2.1	Schematic diagram of EDLC (Vangari et al., 2013)	7
Figure 2.2	Schematic diagram of pseudocapacitor (Vangari et al., 2013)	8
Figure 2.3	Schematic diagram of hybrid supercapacitor (Vangari <i>et al.</i> , 2013)	9
Figure 3.1	Summary of overall methodology	17
Figure 3.2	Input and output responses of cyclic voltammetry (Choudhary <i>al.</i> , 2017)	<i>et</i> 20
Figure 3.3	Schematic representation of electrochemical cell experiment using CV (Elgrishi <i>et al.</i> , 2018)	22
Figure 4.1	CV curve of rGO/Ni 10 in a) H ₂ SO ₄ , b) KOH and c) NaOH	29
Figure 4.2	The Cs trends at various scan rates for rGO/Ni 10	30
Figure 4.3	CV Curve of rGO/Ni 20 in a) H ₂ SO ₄ , b) KOH and c) NaOH	33
Figure 4.4	The Cs trends at various scan rates for rGO/Ni 20	34
Figure 4.5	CV Curve of rGO/Ni 30 in a) H ₂ SO ₄ , b) KOH and c) NaOH	36
Figure 4.6	The Cs trends at various scan rates for rGO/Ni 30	37

ABSTRACT

THE EFFECT OF ELECTROLYTE ON THE ELECTROCHEMICAL PROPERTIES OF REDUCED GRAPHENE OXIDE/NICKEL – BASED TERNARY NANOCOMPOSITE

In this work, the effect of electrolyte on the electrochemical performance of reduced Graphene oxide/Nickel (rGO/Ni) was studied. Its electrochemical performance in three different electrolytes, H₂SO₄, KOH and NaOH was investigated. The dopant concentration used in this study are 10 %, 20 % and 30 % of Nickel loading. The composite exhibits different capacitive behaviour in different aqueous electrolytes, demonstrating the highest specific capacitance (1751.93 Fg⁻¹) at 30 % of Nickel loading in the H₂SO₄ electrolyte due to it having highest molar ionic conductivity compared to the other electrolytes used. The scan rate shows higher value of specific capacitance due to the faradaic reaction occur between the electrolyte and electrolyte and electrole is longer at higher scan rate.

ix