EFFECT OF POST-PURIFICATIONS TREATMENTS ON CELLULOSE NANOCRYSTAL ISOLATED FROM OIL PALM MESOCARP (OPM) BIOMASS

MUHAMMAD SYAFIQ BIN MOHAMMAD

Final Year Project Submitted in Partial Fulfilment of the Requirement for the Degree of Bachelor of Science (Hons.) Chemistry In the Faculty of Applied Sciences Universiti Teknologi MARA Cawangan Negeri Sembilan Kampus Kuala Pilah

JANUARY 2017

This Final Year Project Report entitled "Effect of Post-Purifications Treatments on Cellulose Nanocrystal Isolated from Oil Palm Mesocarp (Opm) Biomass" was submitted by Muhammad Syafiq Mohammad, in partial fulfilment of the requirements for the Degree of Bachelor of Science (Hons.) Chemistry, in the Faculty of Applied Sciences, and was approved by

Ahmad Husaini Mohamed Supervisor B. Sc. (Hons.) Chemistry Faculty of Applied Sciences University Teknologi Mara 72000 Kuala Pilah Negeri Sembilan

Nur Nadia Dzulkifli Co-Supervisor B. Sc. (Hons.) Chemistry Faculty of Applied Sciences University Teknologi Mara 72000 Kuala Pilah Negeri Sembilan

Dr. Sheikh Ahmad Izaddin Mohd Ghazali Project Coordinator B. Sc. (Hons.) Chemistry Faculty of Applied Sciences University Teknologi Mara 72000 Kuala Pilah Negeri Sembilan

Mazni Musa Head of Programme B. Sc. (Hons.) Chemistry Faculty of Applied Sciences University Teknologi Mara 72000 Kuala Pilah Negeri Sembilan

Date: 07/02/2017

TABLE OF CONTENTS

ACKNOWLEDGEMENTS	iii
TABLE OF CONTENTS	iv
LIST OF TABLES	vi
LIST OF FIGURES	vii
LIST OF ABBREVIATIONS	ix
ABSTRACT	х
ABSTRAK	xi

CHAPTER 1 INTRODUCTION

1.1	Background	1
1.2	Problem Statement	7
1.3	Significant of Study	8
1.4	Objectives of Study	9

CHAPTER 2 LITERATURE REVIEW

2.1 Cellulose Nanocrystal (CNC)		10	
2.2	Isolatio	lations Method for Cellulose Nanocrystal (CNC)	
2.3 Instru	Instrun	nents	16
	2.3.1	Fourier Transform Infrared (FTIR) Analysis	16
	2.3.2	Optical Transmittance (UV-Vis)	17
	2.3.3	Scanning Electron Microscope (SEM)	18

CHAPTER 3 METHODOLOGY

3.1	Materials		19
	3.1.1	Raw Materials	19
	3.1.2	Chemicals	19
3.2	Method		19
	3.2.1	Sample Preparation	19
	3.2.2	Bleaching Process	20
	3.2.3	Isolation of Cellulose Nanocrystal (CNC)	20
	3.2.4	Infrared Spectroscopy	21
	3.2.5	Ultraviolet-Visible (UV-Vis) Spectrophotometer.	21
	3.2.6	Chroma Meter	21
	3.2.7	Scanning Electron Microscopy (SEM)	22

CHAPTER 4 RESULTS AND DISCUSSION

4.1	Isolation of Cellulose Nanocrystal (CNC)	24
4.2	Fourier Transform Infrared Spectroscopy (FTIR)	28
4.3	Optical Tranmittance (UV-Vis)	31
4.4	Apparent Color of CNCs	32
4.5	Scanning Electron Microscopy (SEM)	33
CHA	PTER 5 CONCLUSION AND RECOMMENDATIONS	35
CITED REFERENCES APPENDICES		

ABSTRACT

THE EFFECT OF POST-PURIFICATIONS TREATMENTS ON CELLULOSE NANOCRYSTAL ISOLATED FROM OIL PALM MESOCARP (OPM) BIOMASS

Cellulose nanocrystal (CNC) has been isolated from oil palm mesocarp (OPM) using standard sulfuric acid hydrolysis method followed by three different postpurification treatment. These three post-purifications treatment been produce three different end products which is CNC1, CNC2 and CNC3. The effect of postpurifications treatment on the cellulose nanocrystal were determined using FTIR, UV-Vis, Chroma Meter and SEM. During the FTIR analysis there four major peak that been observed which is at the region of 3600 to 3200 cm⁻¹ ,2900 cm⁻¹ ,1700 cm⁻¹ and at 1100 to 600 cm⁻¹. This all peak is importance in conforming the CNC. While in UV-Vis, to indicate the successfully isolated of CNC the light intensity must over 75% in range of 350 to 800 nm. In SEM, the rod-like structure of CNC was observed.