STUDY ON THE EFFECT OF CYCLOHEXANE CONCENTRATION ON MESOPOROUS SILICA NANOPARTICLES

ZULAIKHA BINTI AZMI

Final Year Project Report Submitted in Partial Fulfilment of the Requirements for the Degree of Bachelor of Science (Hons.) Physics in the Faculty of Applied Sciences Universiti Teknologi MARA

JANUARY 2020

TABLE OF CONTENTS

		Page
ACK	NOWLEDGEMENTS	iii
LIST	OF TABLES	vi
LIST	OF FIGURES	vii
LISI	UF ABBREVIATIONS	IX
ABST	RACI 'RAK	x xi
CHAI	PTER 1 INTRODUCTION	1
1.1	Background Of Study	1
1.2	Problem Statement	6
1.3	Significance Of Study	7
1.4	Objectives Of Study	9
CHAI	PTER 2 LITERATURE REVIEW	10
2.1	Mesoporous Silica Nanoparticles	10
2.2	Synthesis Of The Mesoporous Silica Nanoparticle	s 12
CHAI	PTER 3 METHODOLOGY	16
3.1	Introduction	16
3.2	Materials	16
3.3	Detailed Synthesis Steps	17
3.4	Characterization	20
	3.4.1 Scanning Electron Microscope	20
	3.4.2 Fourier Transform Infrared Spectroscopy (FTIR) 21
	3.4.3 UV-Visible Spectroscopy	22
CHA	PTER 4 RESULTS AND DISCUSSION	24
4.1	Introduction	24
4.2	Particles Size Analysis	24
4.3	Elemental Analysis	26
4.4	FTIR Spectra Analysis	27
4.5	UV-Vis Spectroscopy	30
4.6	Structure Analysis	34

LIST OF TABLES

Table	Caption	Page
3.1	Chemical composition of sample produced	17
4.1	The weight of yield product of the sample that had been produced.	25
4.2	The percentage weight of silica in the sample 1 ml C_6H_{12} and 2 ml C_6H_{12}	27
4.3	Chemical structure related to the functional groups.	29
4.4	Details of peak for sample 5 ml C_6H_{12}	37

LIST OF FIGURES

Figure	Caption	Page
1.1	Various types of MSNs reproduced from (Wu, Mou, & Lin, 2013)	2
1.2	Cds nanoparticles-capped SN-based drug/neurotransmitter delivery system(Narayan & Nayak, 2018).	6
2.1	SEM images of silica nanoparticles with two different magnification	14
2.2	XRD patterns of silica nanoparticles	14
2.3	FTIR spectra of the silica nanoparticles samples	15
3.1	The flow chart of method to synthesis MSNs	19
3.2	Scanning electron microscopy machine	20
3.3	Perkin Elmer – Spectrum 400 FTIR machine	21
3.4	UV-1800 UV Vis spectrometer	22
3.5	X-ray diffractometer	23
4.1	SEM images of: a)1ml C_6H_{12} , and b) 2ml C_6H_{12} samples	25
4.2	EDX of the sample: a)1 ml C_6H_{12} , b) 2 ml C_6H_{12}	26
4.3	Representative FTIR spectra for sample prepared with $3m1$, $4m1$ and $5 m1 C_6H_{12}$.	27
4.4	The hydrolysis reaction of TEOS and CTAB	28
4.5	The graph of absorbance versus wavelength	30
	The Tauc plot for direct energy band gap of the sample:	
4.6	a)1 ml C ₆ H ₁₂ , b) 2 ml C ₆ H ₁₂ , c) 3 ml C ₆ H ₁₂ , d) 4 ml C ₆ H ₁₂ , and e) 5 ml C ₆ H ₁₂	31
4.7	Energy band gap versus C ₆ H ₁₂ concentration	33

ABSTRACT

STUDY ON THE EFFECT OF CYCLOHEXANE CONCENTRATION ON MESOPOROUS SILICA NANOPARTICLES

Mesoporous silica nanoparticles (MSNs) were successfully synthesis using microemulsion method with different concentration of cyclohexane (C_6H_{12}). In this method, tetraethyl-orthosilicate (TEOS) act as silica precursor, Cetyltrimethylammonium bromide (CTAB) as surfactant and pore generating agent, and ammonium hydroxide (NH₄OH) as catalyst. The samples were analysed using SEM, EDX, XRD, UV-Vis and FTIR. Scanning Electron Microscope (SEM) image shows that the particle size of sample is smaller due to the increase the amount of C₆H₁₂. Energy Dispersive X-Ray Analyzer (EDX) confirms the presence of SiO₂. X-ray diffraction (XRD) determines whether the structure of the sample amorphous or crystalline. For sample 1 ml. 2 ml. 3 ml and 4 ml C_6H_{12} show they in amorphous form while 5 ml C_6H_{12} sample shows it is in crystalline form. The samples in amorphous form might be due to insufficient heat treatment. The energy band gap for the MSNs were determined using Tauc plot and shows increasing trend from 3.90 eV to 4.20 eV. The increases of energy gap show the decreases of size of particle. From FTIR analysis, the functional group including vibrational and bending modes present were determined. The synthesized mesoporous SiO₂ nanoparticles can be used for several applications such as drug delivery, bio-imaging, and biomedicine. In order to obtain high quality for MSNs, the reaction parameter can be improved in further research.