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ABSTRACT 

 
A combined proactive and reactive approach to deal with disruption in the 

supply chain (SC) is presented in this paper, where an optimization model that 

is capable of determining the optimal safety stock level and optimal recovery 

schedule for a serial two-stage SC system was developed. The system 

considered in the study consists of a single vendor and a single buyer, subject 

to random supply disruption. The vendor keeps extra inventory as safety stock 

to be used at the time of disruption as to minimize stock-outs. In addition, the 

effect of transportation cost to the recovery model is investigated. The 

developed problem is solved using the branch-and-bound algorithm and 

numerical analysis is conducted to show the applicability of the model. The 
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results indicate that the optimal safety stock level is not significantly influenced 

by short disruption time and primarily affected by holding cost value. It can be 

emphasized that within the same number of recovery cycles, the increase of 

setup cost and ordering cost will increase the optimal safety stock quantity. On 

the other hand, an increase in holding cost will decrease the optimal safety 

stock quantity. This paper contributes to the literature on supply disruption 

recovery and safety stock inventory decisions. 

 

Keywords: Supply chain; Supply disruption; Safety stock; Transportation cost; 
Vendor-Buyer Model. 

 

 

Introduction 
    

The capability of an organization’s supply chain will be challenged when 

disruption occurs, as the SC manager need to act fast and optimize the 

necessary resources to respond accordingly. Without an effective action plan, 

the uncertainty and unpredictability that could occur in the daily operations 

might lead to poor SC performance and major loss. Furthermore, major 

disruptions have occurred that caused long-term negative impacts. The 2011 

tsunami in Japan and flood in Thailand are examples for the devastating effects 

that major disruptions could have on the supply chain and subsequently led to 

research work that studied the appropriate mitigation and recovery strategies 

in order to prepare the SC against such catastrophes. 

In the literature, mitigation strategies to face disruptions have been 

proposed, which include avoiding extra leanness, adding redundancy, and 

modularizing process and product design [1].  It was also suggested that SC 

strategies against disruption can be grouped into a general framework of 

prevention, response, protection, and recovery policies [2]. Moreover, it was 

highlighted that a firm can respond better to external disruptions by 

strengthening its relationship with suppliers. From the operational research and 

management science (OR/MS) approach, [3] proposed several mitigation 

strategies for disruption through inventory management, sourcing and demand 

flexibility, facility location, and interaction with external stakeholders. In 

addition, [4] proposed in their study that an alternative strategy for supply 

chain disruption mitigation can be achieved by designing simple processes. 

Mitigation strategies to prepare the SC against supply disruption could 

be in the form of inventory management, sourcing strategy, supply chain 

network design and several others. These proactive approaches are taken 

before the disruptions occur. Reactive strategies, on the other hand, are action 

measures that take place after the disruption occurs, such as the use of backup 

suppliers, backup transportation or possibly different coordination of SC 

operations. In the literature review by [5], the authors studied the quantitative 

methods of supply chain design with a focus on reactive approaches to face 
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disruption. Two disruption considerations commonly considered are whether 

there is a measure for recovery or without any. In addition, three basic risks to 

be considered are production, supply and transportation disruptions. The 

authors proposed future studies that integrate recovery elements into proactive 

models. [6] reviewed the literature on risk and disruption management in 

production-inventory and SC systems. In the study, the modelling work was 

categorized into four classes, including modelling for the imperfect production 

process, with disruption, supply chain risk, and modelling for disruption 

recovery. Solution approaches were classified into traditional optimization 

approaches, heuristic approaches, search algorithm approaches, and simulation 

approaches. This review emphasized the lack of study that considers a series 

of multiple disruptions and also the lack of quantitative disruption and risk 

management models. In addition, implementation of the model on real-life 

supply chain has been very limited.  

In quantitative studies on supply chain disruptions, common objectives 

among the studies were to seek optimal ordering quantity and cost 

optimization. Research work includes studies by [7], which presented a real-

time recovery mechanism for a two-stage serial supply chain system. Another 

study by the same authors [8] was on the economic lot-sizing problem of a 

two-stage SC subject to transportation disruption. [9] studied a multi-layer 

supply chain model while supply disruption, machine breakdown, safety stock,  

and maintenance breakdown that occur simultaneously. Their model calculated 

the integrated total expected cost for the supplier, manufacturer ’s warehouse, 

manufacturer and retailer. [10] proposed a recovery plan for disruptions in a 

two-stage and single item batch production inventory system. In another study, 

[11] proposed a recovery plan for managing disruptions in a three-stage 

production system using an efficient heuristic to manage both single and 

multiple disruptions.   

In the practice of holding extra inventory, there will be a trade-off 

between the cost resulting from disruptions and the cost resulting from the 

inventory protection [12]. The authors presented an economic order quantity 

with disruption (EOQD) model with different ordering policies. [13] studied 

the effectiveness of two inventory-based policies for mitigating the impact of 

supply disruptions. R-policy uses strategic inventory reserves while Q-policy 

uses larger orders. Using analytical model methods, the result showed that R-

policy is better. Furthermore, this paper proposed several practical business 

conditions that would justify the use of reserve inventory. In addition, [14] 

studied the determination of safety stocks based on a policy of linear order 

release rules. The cost efficiency of various safety stocks approaches was 

investigated through a simulation study. These studies indicated that while 

inventory is a common mitigation strategy, the optimal inventory policy under 

disruption and in a complex setting does not have a clear-cut solution. 

      Other research works on safety stock optimization include assembly-

to-order system [15] with the order service level objective or constraint. Two 
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problems were considered which include maximizing order service level and 

minimizing the investment for achieving the service level target. The study 

employed a greedy algorithm that uses the item-level information only which 

can be applied when a detailed bill of materials is not available.  In addition, 

[16] studied optimal safety stock for a serial two-stage SC, under guaranteed-

service safety stock model assumptions. In this study, the safety stock decision 

was determined by the cost and lead time of the SC. Besides, [17] proposed a 

stock control model to optimize the production, the inventory quantity and the 

backorder level simultaneously for a tire manufacturing company. [18] studied 

a dynamic inventory hedging problem in a single product, one-supplier-one-

buyer supply chain. His study presented an improved strategy from the 

traditional inventory management approach using advanced supply signals, 

lost sales, and a fixed transportation cost.  

Within the scope of inventory management strategy combined with 

disruption management, the objective of this study is to develop an inventory 

model of a supply disruption recovery plan that integrates the mitigation 

strategy of keeping extra inventory. In addition, transportation cost is 

incorporated into the model to analyze its effect on disruption process. 

The paper is organized as follows. Section II analyzes the relevant past 

literature of this study. Section III addresses the mathematical model 

development of the problem under study. Section IV lists the results for 

numerical analysis together with the discussion. Section V ends the paper with 

a conclusion and possible areas of future research. 

 

 

Methodology 
 

Model Development 
In this section, an optimal disruption recovery plan is formulated for a two-

stage supply chain system consisting of a single vendor and a single buyer. The 

vendor has both production and inventory system and follows the Economic 

Production Quantity model (EPQ).  On the other hand, the buyer only has 

inventory and follows the Economic Order Quantity Model (EOQ). The 

products are produced in batches where the demand rate is assumed to be 

deterministic and constant. During a normal production cycle at the vendor, 

the production system can face an unexpected supply disruption.  During the 

disruption, there is no production and the unsatisfied demand becomes 

backorders or lost sales. After the disruption ends, the recovery process will 

take place in the recovery window. Safety stock will be used to minimize 

backorders and lost sales in the first cycle of the recovery window. Figure 1 

shows the inventory curve of the problem. 
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Figure 1: Inventory curve for a two-stage supply chain system 

under disruption with safety stocks 

 

The recovery model proposed in this study is based on the model by 

Hishamuddin et al. (2014) with the extension to include excess inventory in 

the form of safety stock. The cost elements included in the model are setup cost, 

inventory holding cost, back order cost, lost sales cost, transportation cost and 

penalty cost. The objectives of the model are to determine the expected total 

cost of the recovery process, the optimal number of production cycles required 

to recover from the disruption, the new recovery schedule, consisting of the 

optimal ordering quantities for buyer and production quantities for the vendor, 

and the optimal level for safety stock  

The following are additional assumptions of the model: 

1.  The production rate is greater than the demand rate 

2.   Backorder and lost sales only occur in the first cycle  

4.  The second stage follows the zero-order inventory policy 

5.  The safety stock inventory level is replenished at the end of the recovery 

cycles  

6.  Disruption time is less than the interval of one production cycle time 

7.  Shipment of the product during normal production and ordering cycle will 

take one round trip of the transport truck 
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8.  The truck can accommodate up to an additional 20% capacity than regular 

quantity for normal ordering cycle  

 

The notations used in developing the mathematical model are as follows:  

 

Decision variables 

Xi                 production lot size of cycle i in the recovery schedule for 

  stage 1 (units) 

Si  order lot size of cycle i in the recovery schedule for  

  stage 2 (units) 

n   number of cycles in the recovery window 

Xs  safety stock quantity (units) 

 

Parameters and notations 

A1      setup cost for the first stage ($/setup) 

A2    ordering cost for the second stage ($/order) 

D       demand rate for the system (units/year) 

H1, H2      annual inventory cost for stages 1 and 2 ($/unit/year) 

P        production rate (units/year) 

Q1      production lot size for stage 1 in the original schedule (units) 

Q2     ordering lot size for stage 2 in the original schedule (units) 

Bq      back order quantity for stage 2 

Lq          lost sales quantity for stage 2 

TD         disruption period 

T              production cycle time for a normal cycle (Q/D) 

ST  production setup time for each production cycle   

B1, B2     unit back order cost per unit time for stages 1 and 2  

  ($/unit/time) 

L1, L2 unit lost sales cost for stages 1 and 2 ($/unit) 

T1i      production time for cycle i in the recovery window for 

  stage 1 

T2i   production time for cycle j in the recovery window for 

  stage 2 

Ii       inventory level at the end of cycle i in the recovery window 

TS  shortage of product during the shortage time 

CT  unit transportation cost for each delivery ($/shipment) 

qt   truck capacity 

f1         the penalty function for the delay in recovering the original  

  schedule in the first stage    

f2     the penalty function for the delay in recovering the original  

  schedule of the second stage handled by the first stage 

f3               the penalty function for the delay in recovering the original  

  schedule in the second stage 
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The total setup cost for stage 1, is formulated by multiplying the set up cost for 

stage 1 with the number of setups or the number of cycles in the recovery period 

:  A1 * (Number of setup)     = A1 * n                   (1)  

           

For this model, the inventory at the end of each cycle i is defined as 

 Ii = Ii-1 + Xi – Si  for i=1, 2 ,…,n                    (2) 

 

Based on Figure 1, the inventory holding cost for stage 1 is obtained by 

calculating the area under the curve during the recovery cycle: 
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For the backorder quantity for stage 1, the number is calculated by the shortage 

of product during the shortage time, TS as indicated below: 
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While the lost sales cost for Stage 1 is  
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As for the transportation cost, the value is obtained by multiplying the unit 

transportation cost per delivery with the number of deliveries in the recovery 

cycle.  

 

         n-1 
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=  CT  ∑ Si/qt         (8) 

           i=1 

 

For the penalty cost, the calculation is as below  

= )()( 2
2

2
1 nfnf                      (9)

   

Finally, the total recovery cost for stage 1 is the combination of all the cost 

elements for stage 1: 
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Subsequently, for stage 2, the total recovery cost for stage 2 consists of 

ordering cost, inventory holding cost, backorder cost lost sales cost and penalty 

cost.  

First, the ordering cost for stage 2 is computed by multiplying the ordering cost 

with the number of orders in the recovery window; 

=  12  nA                                                              (11) 
Then, the inventory holding cost for stage 2 is obtained by calculating the area 

under the curve during the recovery cycle: 
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As for the backorder cost for stage 2, the value is formulated as  
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 = qLL 2                     (14) 

                    

The last cost element is the penalty cost for stage 2 which is defined as  

= )( 23 nf                   (15)  

 

Similar to stage 1, total recovery cost for stage 2 can be formulated by 

combining all the cost elements: 
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The total cost function, which is the objective function is obtained by adding 

TC1 and TC2, subject to system constraints (18) – (24). 

 

=     niSTCniXTCMin ii ,..2,1,,..2,1, 21                   (17) 

 

Subject to the following constraints (17)-(24): 

  

QXi   (to meet delivery requirements)            (18) 

 Si < qt             (truck capacity constraint)             (19) 

     nS IXIo   (initial inventory is equal to safety stock)           (20) 

nPTX

n

i

i 
1

(production capacity constraint.)                             (21) 

 QSn    (final ordering quantity is resumed to original  

  quantity in normal cycle                       (22) 

      ti STT    (disruption time constraint)                         (23) 
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 (to meet demand and safety stock replenishment)                                      

                 (24)

   

     

Results and Discussions 
 

Numerical Analysis 
The recovery model is a complex constrained mixed integer program, thus 

needs a specialized software to solve the model. Therefore, the developed 

model was solved using the Branch-and-Bound algorithm, which was coded in 

LINGO 15.0. This optimization software was selected due to its ability to seek 

global optimal solutions for NP-hard problems and has relatively easy 

application. In the analysis, numerical studies were conducted for five test 

problems.  Table 1 lists the parameters used in the numerical computation. 

Parameters in test 1 are designated as the base parameters for the analysis. In 

test 2, the disruption time is longer. Meanwhile, in test 3, the unit lost sales 

costs are changed to be higher than the unit back order costs. For test 4, the 

unit holding cost values are higher and in test 5, setup cost and ordering cost 

values are doubled. Table 2 lists the results for each test problem. 

Subsequently, Table 3 shows the optimal recovery schedule for each test 

problem, consisting of production and shipment quantities. Values for 

production rate, P = 250 000, demand rate, D=200 000, and unit transportation 

cost CT =200 were used in the analysis. 

 
Table 1: Parameters for the test problem 

 

Test 

No. 
A1 A2 H1 H2 B1 B2 L1 L2 TD 

1 200 50 1.5 2 4 4 8 8 0.01 

2 200 50 1.5 2 4 4 8 8 0.015 

3 200 50 1.5 2 8 8 4 4 0.01 

4 200 50 2.5 3 4 4 8 8 0.01 

5 400 100 1.5 2 4 4 8 8 0.01 
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Table 2: Results for the test problems 

 

 

 

Table 3: Production quantity and ordering quantity in the recovery cycles  

for the test no. 1 to 5 

 

Test no. n Cycle Production 

quantity in 

each cycle 

Shipment 

quantity in 

each cycle 

Inventory 

1 4 1 6708 6708 2236 

  2 5590 6708 1118 

  3 5590 6708 0 

  4 7826 5590 2236 

2 4 1 6024 6708 1552 

  2 5590 6708 434 

  3 6274 6708 0 

  4 7826 5590 2236 

3 4 1 6510 6708 2038 

  2 5590 6708 920 

  3 5788 6708 0 

  4 7826 5590 2236 

4 4 1 5083 5367 1505 

  2 4472 5367 611 

  3 4756 5367 0 

  4 6261 4472 1789 

5 4 1 9487 9487 3162 

  2 7906 9487 1581 

  3 7906 9487 0 

  4 11068 7906 3162 

 

  

Test 

no. 
n TC TC1 TC2 Xs Lq Bq 

1 4 47141.2 33733.6 13407.6 2236 0 1776 

2 4 46667.3 33495.7 13171.6 2236 0 2229 

3 4 47200.7 33677.8 13523.0 2236 0 1618 

4 4 58681.4 42426.0 16255.4 1788 0 1593 

5 4 63354.7 43893.6 19461.1 3162 0 1683 
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From Table 1, it can be seen that the optimal recovery plan for test 1 to 

test 5 was obtained when there were zero lost sales. In addition, the optimal 

recovery cycles for all test problems were similar at four recovery cycles.  

Comparison of the results between test 1 and test 2 showed that total recovery 

cost, TC was a bit lower for test problem 2 even though the disruption time is 

longer. This is due to the lower inventory holding cost. The backorder quantity 

was higher for longer disruption time but optimal safety stock quantity was 

similar to test 1.  

In test 3, the backorder cost B1, B2 and lost sales cost L1, L2 were changed 

so that the backorder cost is higher than lost sales cost. The results showed less 

number of backorder quantity and higher TC from test 1 which is as expected 

from the model.  For test 4, the holding cost H1 and H2 were higher than the 

values in test 1 and the results showed that the optimal safety stock quantity 

and backorder quantity were smaller than Test 1. For test 5, the setup cost A1, 

and ordering cost A2 were higher than test 1 and the results showed a higher 

optimal safety stock level and lower backorder quantity compared to test 1.  

Table 3 shows the production quantity and shipment quantity for each 

recovery cycle. It can be observed that the production quantity is the highest 

for the first cycle in order to minimize stockouts. In addition, it can be seen 

from the table that the inventory quantity at the end of the recovery cycle is 

resumed to the quantity of optimal safety stock.  

The values for safety stock quantity XS were the same for test 1, test 2, 

and test 3. Changes in disruption time, backorder cost, and lost sales cost did 

not make a difference in the optimal results for safety stock. However, different 

optimal safety stock quantity was obtained for test 4 when the holding costs 

were changed. Similarly, the optimal safety stock quantity changed in test 5 

when setup cost and ordering cost were changed. Therefore, it can be 

established that inventory holding cost, setup cost, and ordering cost have a 

substantial effect on the safety stock level. 

      

Sensitivity Analysis 
A sensitivity analysis was performed to investigate the effect of the critical 

parameters of the model. Parameters for test problem 1 were used as the base 

for the analysis. Figure 3 shows the changes in the model for different values 

of disruption time, TD. Figure 4 shows the analysis for different setup and 

ordering cost, while Figure 5 shows the values of total recovery cost and safety 

stock as holding cost changes. Figure 6 shows the effect of different 

transportation cost to the model. 
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Figure 3: TC, XS vs disruption time, TD 

 

 

Figure 4: TC, XS vs setup cost A1 and ordering cost A2 
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Figure 5: TC vs holding cost H1 and H2 

 

                

 
Figure 6: TC vs transportation cost CT 

 

From Figure 3, the total recovery cost TC slightly decreased in the 

beginning but started to increase when disruption time TD is longer than 0.015. 

Within the disruption period range of 0.001 to 0.015, the result for optimal 
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recovery cycle was obtained at four cycles with zero lost sales. However, the 

production quantity and shipment quantity were different because of the 

different quantity of product shortage during the affected time. Within the same 

number of recovery cycles, the solution for optimal production and shipment 

quantity affected the inventory holding costs, thus explaining the slight 

decrease of TC.  As for optimal safety stock (XS) level, all results were similar 

within this TD range. At TD=0.017, the optimal solution was also attained at 

four recovery cycles but with some quantity of lost sales. Thus, the value of 

TC increased. When TD was larger than 0.017, the solution was acquired with 

less number of optimal recovery cycles, a higher number of lost sales, lower 

value of optimal safety stock quantity and higher TC. 

From Figure 4, the result indicated that TC increased with a higher setup 

cost A1 and ordering cost A2. On the other hand, the optimal XS decreased.  The 

optimal recovery cycles for this set of data were the same at four recovery 

cycles. Subsequently from Figure 5, from the range of H1, H2=0.7, 1.2 to 3.0, 

3.5, the values of TC increased with higher holding costs but the quantity of XS 

decreased. The optimal recovery cycles for this set of data were the same at 

four cycles with zero lost sales. When H1, H2 was increased to higher values, 

the optimal recovery cycles was reduced to three cycles with some quantity of 

lost sales. In addition, the values of TC increased while the optimal safety stock 

quantity decreased. In Figure 6, it can be seen that TC increased as the 

transportation cost CT increased while the optimal safety stock level remained 

the same value.  

From the sensitivity analysis of this model, it can be highlighted that 

within the same number of recovery cycles, an increase of setup cost and 

ordering cost will cause the optimal safety stock to increase as well. The reason 

would be that with high safety stock level, backorders and lost sales quantity 

can be minimized without the need for a high number of recovery cycles due 

to high setup and ordering costs. On the other hand, an increase in holding cost 

will decrease the optimal safety stock quantity. This is because, with a high 

level of safety stock and high inventory holding cost per unit, total inventory 

holding costs for the system will be a large value. 

 

Analysis of fixed safety stock policy 
In this section, a scenario where a company owns a stock policy was illustrated. 

For this scenario, the safety stock Xs was a user input instead of a decision 

variable. This situation could represent a company with certain safety stock 

policy due to limitations such as storage space. Four values of XS and two TD 

values were used to investigate the effects of low level, medium level, and 

high-level safety stocks to the optimal recovery schedule. Other parameter 

values are similar to test 1 in the previous section. From the results in Table 4, 

the lowest TC value when TD=0.01 was obtained at XS = 2000 with four optimal 

recovery cycles.  Low level and medium level safety stocks did not change the 

number of optimal recovery cycles. At high-level safety stock, the optimal 
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recovery cycle can be reduced. Meanwhile, for TD=0.02, the lowest TC value 

was obtained at XS = 2500 with three recovery cycles.  The low, medium and 

high safety stocks level did not change the number of recovery cycles, only the 

lost sales and backorder quantity. There is a trade-off between the safety stocks 

level and the backorder and lost sales quantity in the optimal recovery plan. 

 

Table 4: Results of analysis with fixed safety stock policy 

 

TD Xs n TC TC1 TC2 Lq Bq 

0.01 500 4 74925.1 47376.4 27548.8 1736 1382 

 1000 4 66907.3 43450.0 23457.2 1236 1527 

 2000 4 50910.0 35583.6 15326.5 236 1729 

 2500 3 55835.5 36975.4 18860.1 854 1817 

0.02 500 3 86541.0 51644.6 34896.4 2854 1817 

 1000 3 78509.2 47874.5 30634.7 2354 2139 

 2000 3 62510.0 39969.4 22540.6 1354 2236 

 2500 3 54551.6 36022.2 18529.5 854 2236 

 

 

Conclusion 
 

In this paper, an inventory recovery model of a two-stage serial supply chain 

consisting of a vendor and a buyer subject to supply disruption was developed. 

Mitigation strategy by keeping extra inventory or safety stock was considered 

as the response to the supply disruption. The developed model is a nonlinear 

constrained model that is capable of providing the total recovery cost, the 

optimal number of recovery cycles, production and order quantity for the 

vendor and the buyer, and the optimal safety stocks quantity. In the numerical 

examples, five test problems were used to examine the result of the model. A 

sensitivity analysis was conducted to examine the effect of the critical 

parameters of the model. In addition, a scenario where safety stock level is a 

fixed quantity was provided to illustrate the situation where the SC may have 

constraints in the amount of safety stock that can be kept. 

The results showed that the optimal amount of safety stock was not 

significantly influenced by short disruption time.  When disruption time was 

large and resulted in high lost sales, less number of optimal recovery cycle was 

obtained in the result. In addition, the result of optimal safety stock was also 

reduced. From the results, it can be emphasized that within the same number 

of recovery cycles, an increase of setup cost and ordering cost will affect the 

optimal safety stock quantity to increase as well. On the other hand, an increase 

in holding cost will decrease the optimal safety stock quantity. Small increases 

in transportation cost do not affect the number of optimal recovery cycles and 

optimal safety stock level. The model in this study can be used for SC managers 

to make better decisions in terms of inventory management to prepare and 
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respond to supply disruption. For future research, this study can be extended to 

multiple buyers or three echelon system setting. Furthermore, the duration of 

disruption can be assumed to be longer than one production cycle or 

consideration can be made for multiple disruptions. Introducing the effect of 

other constraints that might reflect real life SC operations would be another 

interesting extension. 
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