DETERMINATION OF RADON CONCENTRATION AND EMANATION RATE IN SOIL USING CR-39 AND CRM SURROUND UITM JENGKA

NURINA AMANI BINTI YAZID

Final Year Report Submitted in Partial Fulfilment of the Requirements for the Degree of Bachelor of Science (Hons.) Physics in the Faculty of Applied Sciences Universiti Teknologi MARA

JANUARY 2020

TABLE OF CONTENTS

Page

ACK TABI LIST LIST LIST ABST ABST	NOWLEDGEMENT LE OF CONTENTS OF TABLES OF FIGURES OF ABBREVIATIONS FRACT FRAK	iii iv vi vii ix x xi
СНА	PTER 1 INTRODUCTION	
1.1	Background of the study	1
1.2	Problem statement	2
1.3	Significant of study	3
1.4	Objectives of study	4
CHA	PTER 2 LITERATURE REVIEW	
2.1	Naturally Occurring Radioactive Material (NORM)	5
	2.1.1 Uranium-238	6
	2.1.2 Thorium-232	7
	2.1.3 Potassium-40	8
	2.1.4 Radon-222	9
2.2	Soil	10
2.3	Solid State Nuclear Track Detector.	11
	2.3.1 CR-39	12
	2.3.2 Etching treatment	12
	2.3.3 Radon tracks on CR-39	13
2.4	Continuous Radon Monitor	13
2.5	Energy Dispersive X-Ray Fluorescence	14
2.6	Air-tight chamber method.	14
2.7	Comparison studies of detectors	15
2.8	Emanation of radon in soil	21
2.9	Radiological effect	21
CHA	PTER 3 METHODOLOGY	
3.1	Preamble	23
3.2	Apparatus and instruments	24
3.3	Chemicals	24
3.4	Framework flow process	25

Sampling location Samples collection 3.4.1 27 3.4.2 28

	3.4.3	Samples preparation	29
	3.4.4	Method preparation	30
	3.4.5	Sealed cup technique	30
	3.4.6	Air-tight chamber method	31
	3.4.7	Etching	33
	3.4.8	Energy Dispersive X-Ray	34
3.5	Radio	ological assessment of CR-39	35
	3.5.1	Track density	35
	3.5.2	Radon gas concentration	36
	3.5.3	Radon gas emanation rate	36
3.6	Radio	ological assessment of CRM	37
	3.6.1	Radon gas concentration	37
	3.6.2	Radon gas emanation rate	37
3.7	Radio	ological risk	38
	3.7.1	Annual effective dose rate	38
	3.7.2	External hazard index	39

CHAPTER 4 RESULTS AND DISCUSSION

4.1	Pream	ble	40
4.2	Radon	a gas concentration and emanation rate using CR-39.	40
4.3	Radon gas concentration and emanation rate using CRM		44
4.4	Eleme	ental analysis using EDXRF	46
	4.4.1	Concentration of radionuclides	46
	4.4.2	Radiological risk	49
4.5	Comp	arison of methods in the study.	52
	4.5.1	Radon concentration analysis method comparison	52
	4.5.2	Radon emanation rate analysis method comparison	53

CHAPTER 5 CONCLUSION AND RECOMMENDATION

5.1	Conclusion	55
5.2	Recommendation	57

REFERENCES	58
APPENDIX	63
CURRICULUM VITAE	65

LIST OF TABLES

Table	Caption	Page
2.1	Measurements of radionuclides using CR-39 in the previous years	16
2.2	Measurements of radionuclides using CRM in the previous years	19
3.1	Coordinates of sampling points	27
4.1	Variation of track density, concentration and emanation rate of ²²² Rn using CR-39	41
4.2	Variation of concentration and emanation rate of ²²² Rn using CRM	44
4.3	Variation of primordial radionuclides in samples using EDXRF	47
4.4	Variation of dose rate, annual effective dose and external hazard index in samples	49
4.5	Comparison of method in radon concentration	52
4.6	Comparison of method in radon emanation rate	53

ABSTRACT

DETERMINATION OF RADON CONCENTRATION AND EMANATION RATE IN SOIL USING CR-39 AND CRM SURROUND UITM JENGKA

The determination of radon gas in the soil was performed using CR-39 and CRM to assess the radon concentration and emanation rate for the selected point in UiTM Jengka via the sealed container method and evaluating the radiological risk. The soil samples were collected from 10 coordinates inside the parameter of UiTM Jengka using GPS and transformed into loose powder samples. CR-39 and CRM were used to analyse the radon gas production in the samples while the primordial radionuclides were analysed using EDXRF. The radon concentration and emanation rate analysed using CR-39 varies between 45.5 - 156 Bgm⁻³ and 0.04 -0.15 Bgm⁻²day⁻¹ respectively. Meanwhile, the radon concentration and emanation rate analysed using CRM varies between -14.60 - 89.10 Bgm⁻³ and $-1.05 \times 10^{-6} -$ 6.39 x 10⁻⁶ mBq/kg⁻¹hr⁻¹ respectively. UJ1 was found to be in a high radon content while UJ8 has the lowest radon content. From the EDXRF analysis, the source of radon concentration in the soil samples were studied and the radiological risk has been assessed. Potassium-40 element did present in all samples while Thorium-232 partially present in some of the samples. However, Uranium-238 was not found in any of the samples. The soil samples from the selected points in UiTM Jengka does not exceed maximum world limit of dose rate. However, UJ1, UJ2, UJ4, UJ5 and UJ6 possessed a radiological risk as the external hazard index exceeds value of 1.