AN IMPROVEMENT OF AUTOMATED SOFTWARE FAULT INJECTION TOOL FOR ROBUSTNESS

 $\mathbf{B}\mathbf{y}$

MOHD DAUD BIN ALANG HASSAN SAIFUL FADZLI BIN SALIAN

DECEMBER 2008

TABLE OF CONTENTS

DECLARAT	IONS			
ACKNOWLI	EDGEMENTS			
TABLE OF CONTENTS				
LIST OF FIG	GURES	v		
LIST OF TA	BLES	viii		
LIST OF AB	BREVIATIONS	ix		
ABSTRACT		X		
CHAPTER 1	INTRODUCTION			
1.1	Introduction	1		
1.2	Overview 2			
1.3	Aim and Objectives of this Project 4			
1.4	Project Outline 5			
CHAPTER 2	LITERATURE REVIEW			
2.1	Introduction	6		
2.2	Overview Software Testing 6			
2.3	A Survey of Java Based Software Testing Tools			
	2.3.1 JACA	8		
	2.3.2 Javassist	9		
	2.3.3 JOSIT	9		
	2.3.4 JUnit	10		
	2.3.5 FIONA	10		
	2.3.6 Gretel	11		
	2.3.7 SoftTest	11		
	2.3.8 SFIT	12		
2.4	Analysis of Software Testing Tools			
2.5	Summary 14			

CHAPTER 3		INTRODUCING SFIT	
3.1	Introdu	cing SFIT	15
3.2	SFIT C	omponents	15
	3.2.1	Class Inspector	16
	3.2.2	Fault Setting	17
	3.2.3	Loader and Generator	18
	3.2.4	Fault Injector	18
	3.2.5	Log	19
3.3	SFIT Testing Process		
3.4	Enhancement of SFIT		
3.5	Summary		
CHAPTER 4		EXPERIMENTS WITH SFIT	
4.1	Introdu	ection	24
4.2	Overvi	ew of Linda and Jada	25
4.3	Runnin	ng Experiments	30
	4.3.1	Experiment 1: public void out (Object item)	32
	4.3.2	Experiment 2: public void out (Object objects[],	
		int n objects	35
	4.3.3	Experiment 3: public object in (Object match)	38
	4.3.4	Experiment 4: public object in (Object match[],	
		int n_objects)	42
	4.3.5	Experiment 5: public object in (Object match[],	
		long timeout)	45
	4.3.6	Experiment 6: public object in (Object match[],	
		Int n_objects, long timeout)	48
	4.3.7	Experiment 7: public object in_nb (Object match)	51
	4.3.8	Experiment 8: public object in_nb (Object match[],	
		int n_objects)	53
	4.3.9	Experiment 9: public object read (Object match)	57
	4.3.10	Experiment 10: public object read (Object match[],	
		long timeout)	59

	4.3.11	Experiment 11: public object read (Object match[],	
		Int n_objects)	62
	4.3.12	Experiment 12: public object read (Object match[],	
		Int n_objects, long timeout)	66
	4.3.13	Experiment 13: public object read_nb (Object match)	69
	4.3.14	Experiment 14: public object read_nb (Object match[],	
		Int n_objects)	72
	4.3.15	Experiment 15: public object read (object match)	
		with maximum allowable test cases of 2500	75
4.4	Summ	ary	78
CHAPTER 5		ASSESSMENT AND DISCUSSION	
5.1	Lesson	Learned from SFIT	79
5.2	Future Work		83
5.3	Conclu	uding Remarks	84
REFERENC	ES		85

APPENDIX A Object Space Class

ABSTRACT

This project is a continuation from earlier work involving the development of a software fault injection tool, called SFIT. A number of limitation is observed in the earlier version of SIFT in terms of the support for automated testing, the integration with a graphical user interface as well as the capabability to keep historical data. A new version of SFIT has been developed as a result.

In order to evaluate its suitability and applicability as a general software testing tool, a number of experiments have been devised utilizing SFIT to perform robustness testing on a public domain commercial-off-the-shelves components for distributed shared memory manipulation library, called Jada. In doing so, a number of observation have also been made in terms of the robustness of Jada (i.e. in terms of whether or not Jada can be used in a highly available and safety critical systems).