DEVELOPMENT OF SINGLE PHASE INVERTER USING BIPOLAR SINUSOIDAL PULSE WIDTH MODULATION (SPWM)

INSTITUT PENYELIDIKAN, PEMBANGUNAN DAN PENGKOMERSILAN UNIVERSITI TEKNOLOGI MARA 40450 SHAH ALAM, SELANGOR MALAYSIA

BY :

KAMARULAZHAR BIN DAUD AHMAD ASRI BIN ABD SAMAD NUR ASHIDA BINTI SALIM

AUGUST 2008

Table of Contents

TABLE OF CONTENTS			
LIST OF FIGURES			
LIST OF TABLES LIST OF SYMBOLS AND ABBREVIATIONS			
			ABSTRACT
CHAPTER	R 1: INTRODUCTION	1	
1.1	Background of Total Harmonic Distortion	1	
1.2	Inverter	2	
1.3	Objectives of the Project	3	
1.4	Problem Definition	4	
1.5	Project Organization	5	
CHAPTER	2: LITERATURE REVIEW	6	
2.1	Introduction	6	
2.2	Principle of Operation	6	
	2.2.1 Half Bridge Inverter	6	
	2.2.2 Full Bridge Single Phase Inverter	10	
2.3	Pulse Width Modulation	12	
	2.3.1 Introduction	12	
	2.3.2 Theory of Pulse Width Modulation	13	

	2.4	Perfor	mance Parameters	25	
	2.5	Filters	;	27	
	2.6	Revie	w of Previous Methods	28	
CHAP	PTER 3	B: MET	HODOLOGY	32	
	3.1	Introd	uction	32	
	3.2	Hardware Design for Pulse Width Modulation			
	3.3	Development of Pulse Width Modulation Software by M68HC11E2			
		3.3.1	Assembly Language	38	
		3.3.2	Assembly Language Programming	38	
		3.3.3	Designing the switching pulses	39	
		3.3.4	Software Development Tools	41	
			3.3.4.1 MiniIDE	41	
			3.3.4.2 HC Loader	42	
			3.3.4.3 Microcontroller Port	44	
			3.3.4.4 Operating Modes	45	
			3.3.4.5 Serial Communication Interface	47	
	3.4	Desigr	Overview of Inverter	48	
		3.4.1	SPWM Strategy	48	
		3.4.2	Power Circuit	49	
		3.4.3	Driver Circuit	50	
		3.4.4	Switch	52	
		3.4.5	Switching Edges	54	
		3.4.6	Deadtime	55	
		3.4.7	Output Filter	56	
		3.4.8	Steady State Operation	58	
CHAP	TER 4	: RESU	LTS AND DISCUSSION	62	
	4.1	Introdu	iction	62	
	4.2	Simulation result on single phase inverter 6			
	4.3	Hardware result on microcontroller and inverter 67			
		4.3.1 Result on prototype for microcontroller M68HC11E2 6			

4.3.2 Result on dead time			70
4.3.3 Result on inverter performance			72
		4.3.3.1 Without filter	72
		4.3.3.2 With filter	77
CHAPTER 5: CONCLUSIONS			84
	5.1	Conclusions	84
	5.2	Future work	86
REFE	RENCI	ES	87
APPE	NDICE	S	
Appen	dix A: F	PSpice simulation circuit	
Appen	dix B: S	oftware development using PSpice	
Appen	dix C: I	Datasheet Power MOSFET IRF840	

Appendix D: Datasheet Half Bridge Driver L6384

Appendix E: Datasheet Microcontroller MOTOROLA M68HC11E2

ABSTRACT

In this research, development of a new approach switching technique of a singlephase inverter is presented. Development of bipolar sinusoidal pulse width modulated inverter is aimed to get the desired smooth sinusoidal waveform with minimum harmonics of about \pm 10%. However, practical design of the bridge inverter produce output voltage with certain harmonics not as identical as the desired sinusoidal output voltage of an ideal inverter. The bipolar sinusoidal pulse width modulation or SPWM method is proposed to get the desired waveform through proper design of switching pulse. There are two techniques commonly used in SPWM; bipolar SPWM switching and unipolar SPWM switching. The microcontroller M68HC11E2 is used to program the bipolar sinusoidal pulse width modulation (SPWM) waveform. An assembly language is used as software to program the bipolar SPWM waveform. Designing the switching pulses and the bridge inverter are the main part of this research project. Simulation through a computer aided design tool such as PSpice is used before designing the actual inverter. This new technique can be used to produce a bipolar Sinusoidal Pulse Width Modulation (SPWM) for the application of the inverter circuit.