SYNTHESIS, CHARACTERIZATION AND ANTI-CORROSION SCREENING OF Pt(II) THIACETAZONE COMPLEX

SYAIDATUL ATIQAH BINTI GHAZALI

Final Year Project Report Submitted in Partial Fulfillment of the Requirements for the Degree of Bachelor of Science (Hons.) Chemistry In the Faculty of Applied Sciences Universiti Teknologi MARA

JANUARY 2017

This Final Year Project Report entitled "Synthesis, Characterization and Anticorrosion Screening of Pt(II) Thiacetazone Complex" was submitted by Syaidatul Atiqah binti Ghazali, in partial fulfillment of the requirements for the Degree of Bachelor of Science (Hons.) Chemistry, in the Faculty of Applied Sciences, and was approve by

Nur Nadia Dzulkifli Supervisor B. Sc. (Hons.) Chemistry Faculty of Applied Sciences Universiti Teknologi MARA Kuala Pilah Campus 72000 Kuala Pilah Negeri Sembilan

Ahmad Husaini Mohamed Co-Supervisor B. Sc. (Hons.) Chemistry Faculty of Applied Sciences Universiti Teknologi MARA Kuala Pilah Campus 72000 Kuala Pilah Negeri Sembilan

Dr. Sheikh Ahmad Izaddin Sheikh Mohd Ghazali Project Coordinator B. Sc. (Hons.) Chemistry Faculty of Applied Sciences Universiti Teknologi MARA Kuala Pilah Campus 72000 Kuala Pilah Negeri Sembilan

Mazni Musa Head of Programme B. Sc. (Hons.) Chemistry Faculty of Applied Sciences Universiti Teknologi MARA Kuala Pilah Campus 72000 Kuala Pilah Negeri Sembilan

Date: $\frac{7}{2}/2017$

TABLE OF CONTENTS

72

		Page
АСК	NOWLEDGEMENTS	iii
	LE OF CONTENTS	iv
	OF TABLES	vi
	OF FIGURES	vii
	OF ABBREVIATIONS	VIII
	ГВАСТ	ix
	ГКАК	X
		~
СНА	PTER 1 INTRODUCTION	
1.1		1
	Problem Statement	6
	Significance of Study	7
1.4	Objectives of Study	8
СНА	PTER 2 LITERATURE REVIEW	
2.1		9
2.2		12
	2.2.1 Biological Activity	12
	2.2.2 Corrosion Inhibitors	13
	2.2.3 Heavy Metal Ions Removal	14
2.3		15
	2.3.1 Fourier Transform Infrared (FT-IR)	15
	2.3.2 Ultraviolet-Visible (UV-Vis)	17
	2.3.3 Elemental Analysis	19
	2.3.4 Anticorrosion	21
СНА	PTER 3 METHODOLOGY	
3.1	Materials	23
	3.1.1 Chemicals	23
	2.1.2 Assumptions	22

	3.1.1	Chemicals	23
	3.1.2	Apparatus	23
	3.1.3	Instruments	23
3.2	Metho	ods	24
	3.2.1	Synthesis of Platinum (II) complex	24
3.3	Chara	cterization	25
	3.3.1	Fourier-Transform Infrared (FT-IR)	25

	3.3.2	Ultraviolet-Visible (UV-Vis)	26
	3.3.3	Melting Point	26
	3.3.4	Gravimetric Analysis	27
	3.3.5	Molar Conductivity	28
3.4	Corros	sion Inhibition Study	28
	3.4.1	Preparation of Solution	28
	3.4.2	Weight Loss Method	29

CHAPTER 4 RESULTS AND DISCUSSION

. E <u>-</u>

4.1	Synthesis of Complex	30
4.2	Physico-chemical Analysis	31
4.3	FTIR Spectral Data	34
4.4	UV-Vis Spectra	37
4.5	Gravimetric Analysis	40
4.6	Molar Conductivity Measurement	41
4.7	Corrosion Inhibitor Study	41

CHA	PTER 5 CONCLUSION AND RECOMMENDATION	
5.1	Conclusion	47
5.2	Recommendation	51
CITE	N DEFEDENCES	52

CITED REFERENCES	52
APPENDICES	58
CURRICULUM VITAE	64

ABSTRACT

SYNTHESIS, CHARACTERIZATION AND ANTICORROSION SCREENING OF Pt(II) THIACETAZONE COMPLEX

A Pt(II) complex of thiacetazone, (TAC) ligand was successfully synthesized by slow diffusion method. The complex is obtained from the reaction of a few drop ammonia solution and thiacetazone. The ligand and synthesized complex was characterized by spectroscopic method such as FT-IR, UV-Vis, elemental analysis, molar conductance, gravimetric analysis and melting point, and have been applied as inhibitor. The results of characterization showed that TAC was coordinated in the N and S bidentate mode in the complex. The elemental analysis for compound were in a good agreement with the theoretical values. The value of melting point for complex which is 270-272 °C was higher than ligand which is 228-230 °C. The result of UV-Vis analysis revealed two types of transition which are $n \rightarrow \pi^*$ and $\pi \rightarrow \pi^*$ in ligand and complex spectrum. The molar conductance showed the Pt(II) complex is non-electrolyte with chemical formula [Pt(TAC)₂]Cl₂. The gravimetric analysis presented the percentage of metal was 26.41%. The data from corrosion inhibition study found that the inhibitor efficiency of ligand is higher than complex. The inhibitor efficiency increase as the inhibitor concentration increase from 0.001 M to 0.1 M.