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ABSTRACT 

 

This paper proposes a procedure to mathematically model the counterweight 

of rotating links based on calculations according to design requirements. The 

main objective of the research is to introduce an effective method to design 

the counterweight using CAD drawing. A parameterized equation is 

formulated with the help of counterweight geometry derived from a typical 

crankshaft counterweight design. Using the law of moments and Center of 

gravity of links, the geometry of counterweight can be found using the 

formula that is parameterized with a single variable. The results were 

obtained by finding the roots of the final equation. The method was found to 

be effective in term of time consumption rather than implementing the 

iterative method. 

 

Keywords: Mathematical model; Counterweight design; Link balancing; 

centre of gravity; Centroid location. 

 

 

Introduction 
 

Sébastien Briot and Vigen Arakelian [1] stated that whenever an unbalanced 

mechanism runs at high speeds, both shaking force along with shaking 

moment is transferred to the surroundings. These instabilities are the sources 

of vibrations, wear, noise and fatigue problems, and therefore cause the 
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decrease in machine efficiency. If the total mass centre of a mechanism is 

made static, then the vector sum of the forces acting on the mechanism frame 

disappears. 

Arakelian and Smith [2] stated that some of the well-known balancing 

methods depend on the relocation of the mass of mechanism by the addition 

of counterweights to the links. This method is usually restricted to 

uncomplicated mechanisms which have only revolute joints, for overall 

shaking force balancing. Arakelian & Smith [3] mentioned that in high speed 

operating machines, vibration can be reduced by mass balancing the moving 

links that significantly enhance their performances. Nevertheless, absolute 

shaking force and shaking moment balancing is a complex problem. A 

counterweight is added on the opposite side of pivot of the link which 

permits the relocation of the centre of mass of total link to the joint. 

Arakelian and Smith [2] mentioned in their review paper about the 

inertia forces in four-bar linkages. In Figure 1(a) Shaking force balancing is 

accomplished by two counterweights connected to crank 2 and to rocker 4. 

This achieves partial force balance but takes no account of coupler 3. An 

alternative method that is less frequently applied is shown in Figure 1(b) 

which balances coupler first and based on the effect of increased crank mass, 

the entire mechanism is balanced.  

 

 
Figure 1: Partial shaking force balanced configuration [2] 

Berkof and Lowen [4] proposed a new method called “Method of 

Linearly Independent Vectors” to completely force balance planar linkages. 

This way, the overall mass centre can be made static, thus the shaking force 

disappears. They studied that the minimum number of counterweights 

required to balance a four-bar mechanism is two, one at the crank and another 

at rocker. In other words, the counterweights are coupled to the fixed pivots 

of the input link and the output link. This means that the coupler link remains 

unchanged. The shaking force and shaking moment are generated within the 

mechanism due to the inertia loads. By the formulation of mass 

rearrangement and introduction of secondary masses, the complete shaking 

force and shaking moment of a four-bar mechanism vanish. 
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P. Nehemiah et al. [5] presented their research techniques to 

completely balance the shaking forces of planar linkages of high complexity. 

These linkages are applied in many automatic machines and engines of 

various configurations. This force balancing includes the mass redistribution. 

The planar linkages are replaced by concentrated point masses which were 

balanced by the addition of counterweights on the other sides of linkages. 

S.R. Deepak and G.K. Ananthasuresh [6] discussed in their paper three 

techniques to statically balance four-bar mechanism using free length springs 

and auxiliary links. The linkages are made balanced by introducing balanced 

parallelogram which balances the spring connected between its opposite 

vertices. The number of additional links added is less than or equal to that of 

other methods present in literature. S.R. Deepak and G.K. Ananthasuresh [7] 

later developed a method to statically balance revolute-joint linkages loaded 

by constant forces or free length springs without any aid of auxiliary bodies. 

This method iteratively removes the dependence of potential energy on 

variables of linkages. 

Kailash and Himanshu [8] presented an optimization technique to 

minimize shaking forces using a genetic algorithm (GA) which develops an 

equivalent system of point masses to represent inertial properties of linkages. 

Equations of motion are developed related to the point masses and 

optimization problem is generated to minimize shaking forces. 

Researchers tried to find new ways of balancing the linkages and 

mechanisms and most of them state that the addition of counterweight to 

links of mechanisms helps in reducing shaking forces. Hence counterweight 

mass and position calculation can be found using the formulations proposed 

by the researchers. CAD drawings can be generated for the counterweight 

design based on those calculations. However, imprecisions in the fabrication 

of counterweights yields an error in the mass balancing of linkages. A 

mechanism shows unbalance even if it is theoretically fully balanced, because 

of the inaccuracies of its manufacturing. Kamenskii [9] stated that the actual 

accuracy can be increased by experimental balancing on a special stand. The 

literature on the methods of designing the counterweights can be scarcely 

found. Engine manufacturers do not make their classified blueprints of 

engine design available for the public because it can be copied by rival 

industries. This paper shows a simple method to formulate a parameterized 

design equation for counterweight which does not require iterations and gives 

accurate results as needed. 

Although the easiest way of designing is by trial-and-error, however, 

this technique is time-consuming. This paper shows how the counterweight 

designing is achieved using a mathematical model for an individual link 

based on an existing counterweight design for crankshafts in automotive. The 

procedure is achieved by using Law of moments and Centroid positioning 

using geometric constraints and ratios to restrict the centre of gravity of link 

on the joint to minimize shaking forces. 
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Methodology 

 
A typical crankshaft counterweight (CW) design is shown in Figure 2 which 

is a solid rectangle at the bottom and a semi-circle at the top. This geometry 

is taken as a benchmark for the design of counterweight of a link for any type 

of motion in this research.   

 

 
 

Figure 2: A typical counterweight design for crankshafts 

In order to generate a simplified design for the typical counterweight 

and to formulate a parametric design equation, a rigid crank link is taken. In 

this case, it is assumed that the link dimensions and mass properties are 

known. Based on this information, Centroid or Center of gravity (CG) of the 

link with respect to the pivot point can be obtained using CAD software. The 

mass-centroid product of the link should be the same as that of its 

counterweight for complete static balancing according to Law of Moments. 

In this study, the counterweight of shape as shown in Figure 3 is used, 

which includes a semi-circle at the top and a rectangle at the bottom which is 

directly attached to the link to be balanced. The link is pivoted on one end 

and the other end of the link may be connected to another link. The 

counterweight is to be placed on the other side of the pivot. The radius of the 

semi-circle is designated as r. The width d and thickness t of the rectangular 

body is set according to the dimensions of the actual link. The distance 

between the axis of the revolute joint or pivot O of the link and the end of the 

link is h which is dependent on the design of link and cannot be changed. On 

the other hand, the length b, which is the length of the rectangular body, is 

variable according to requirements. 
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Figure 3: The geometric features of the proposed counterweight 

Based on Figure 3, the area of semi-circle and rectangle are given by: 

 

𝐴1 =
𝜋𝑟2

2
                                                                                                        (1) 

𝐴2 = 𝑏𝑑                (2) 

 

To simplify the counterweight design, the parameters are formulated 

to have a single variable, which in this case is the radius of a semi-circle. For 

variation in CG location within the design, b is defined as  
𝑏 = 𝑐𝑟 

where c is a user-defined ratio according to requirements. Hence from eq (2). 

 

𝐴2 = 𝑐𝑟𝑑                          (3) 

 

The total CW area will be 

𝐴𝑇𝑂𝑇𝐴𝐿 = (
𝜋𝑟2

2
+ 𝑐𝑟𝑑)                                                                                  (4) 

 

The CG position of total geometry can be calculated using the formula 

of the centroid for composite bodies. Figure 4 shows the CG positions of 

Semi-circle and Rectangle. 

 

From Figure 4, the centroid composite formula can be represented as follows: 

𝐴1𝑥1 + 𝐴2𝑥2 = 𝐴𝑇𝑂𝑇𝐴𝐿𝑥𝐶𝐺               (5) 
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Figure 4: The centroid positions of the semi-circle (a), Rectangle (b) and 

Combined CW (c) 

 

Substituting the values of A1 and A2 in eq. (5) yields 

𝜋𝑟2

2
𝑥1 + 𝑐𝑟𝑑𝑥2 =  𝐴𝑇𝑂𝑇𝐴𝐿𝑥𝐶𝐺              (6) 

 

Where x1, x2 and xCG are the CG position of the area of semi-circle A1, the 

rectangular area A2 and the combined counterweight geometry from pivot O 

respectively. xCG is the overall CG position of the combined counterweight 

geometry. 

 

Since the centroid of the semi-circle is given by 𝑦 =
4𝑟

3𝜋
 and that of the 

rectangle by 𝑦 =
𝑏

2
 therefore, 

𝑥1 = (ℎ + 𝑏 + 
4𝑟

3𝜋
)              (7) 

𝑥2 = (ℎ +
𝑏

2
)             (8) 

For mass properties of CW, the following formula holds 

𝑉 =  𝐴𝑇𝑂𝑇𝐴𝐿 𝑡 =
𝑚

𝜌
             (9) 

⇒ 𝑉 =  𝐴𝑇𝑂𝑇𝐴𝐿 =
𝑚

𝜌𝑡
           (10) 

 

Where ρ is the density, m is the mass and v is the volume of counterweight. 

Putting ATOTAL in equation (6). 

 
𝜋𝑟2

2
(ℎ + 𝑐. 𝑟 +

4𝑟

3𝜋
 ) + (𝑐. 𝑟. 𝑑) (ℎ +

𝑐.𝑟

2
) =

𝑚𝑥𝐶𝐺

ρ𝑡
        (11) 

 

To achieve a complete static balance of the link, by Law of moments, 

the counterweight must have the same mass moment as that of the actual link. 

In this case, m.xCG is the mass moment of CW, but the value of the mass 

moment of the actual link will be used in the equation to achieve static 

balance. 
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Simplifying eq (11), the following formula is obtained 

 

(
𝜋

2
𝑐 +

2

3
) 𝑟3 + (

𝜋

2
ℎ +

𝑐2

2
𝑑) 𝑟2 + (𝑐. ℎ. 𝑑)𝑟 =

𝑚𝑥𝐶𝐺

ρ𝑡
     (12) 

 

This is a 3rd Order Equation with unknown variable r which can be 

solved for the roots. It gives two complex roots and a real root. The real value 

of r will be used to design the counterweight. If smaller or bigger value of r 

is desired, then the constant c can be varied to give different geometrical 

results. 

 

Example 
Assume a crank link as shown in Figure 5 with dimensions and properties 

given in Table 1. 

 

 
 

Figure 5: Unbalanced crank link 

 

Assuming the value of 𝑐 = 0.2 

Therefore, substituting the values in Eq. (12) 

 

(
𝜋

2(0.2)
+

2

3
) 𝑟3 + (

𝜋

2(12)
+

(0.2)2

2(24)
) 𝑟2 + (0.2 x 12 x 24)𝑟 =

0.139 x 7.995

7.86x10−6 x 10
       

            (13) 

 

Simplifying yields 

0.981𝑟3 + 19.33𝑟2 + 57.6𝑟 − 14138.74 = 0        (14) 
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Table 1 Crank link dimensions and mass properties 

 

Dimension/Property Denotation Value 

Mass 

Density (Mild Steel) 

CG Position (from pivot) 

Width 

Thickness 

Pivot to End-point distance 

m 

ρ 

xCG 

d 

t 

h 

0.139 kg 

7.86x10-6 kg/mm3 

7.995 mm 

24 mm 

10 mm 

12 mm 

 

The roots of Eq. (12) are: 

𝑟 =  18.63  
𝑟 =  −19.17 + 20.14𝑖  
𝑟 =  −19.17 − 20.14𝑖               (15) 

 

There are two complex roots (16,17) and one real root (15) of the 

equation. Therefore, the real value of 𝑟 =  18.63 mm will be used to design 

the counterweight of the crank link. 

 

Since 

𝑏 = 𝑐. 𝑟  
𝑏 = 0.2 x 18.63 = 3.72mm           (16) 

 

After designing the counterweight based on the calculated radius r, the 

final crank link transformed as shown in Figure 6. 

 

 
 

Figure 6: Balanced crank link 

 



       Mathematical Modelling and Design of Counterweights for Unbalanced Links 

165 

The centroid location of the balanced link from the pivot of the crank 

link is 0.019mm. This small round-off error of 1.9% rises because of using 2 

significant figures of values used in calculations and CAD drawing. As this 

balanced crank link has its CG precisely at its axis of rotation, the link will 

generate almost negligible shaking forces on the frame at high-speed rotation. 

 

 

Conclusion 
 

A method of designing an actual counterweight using CAD drawing has been 

proposed. In brief, an equation is formulated with a single variable to 

represent the geometry of counterweight. One of the roots of equation 

denotes the required dimension of the counterweight. This method was found 

to be very effective in terms of time consumption as an iterative methodology 

requires solving some higher order equations with multiple variables for each 

timestep. Iterations are run until the solution converges to a root value which 

is not guaranteed in a specific time duration. However, this method gives a 

parametrized equation in terms of a single variable for any desired shape 

which can be calculated in a single step in comparatively no time. 

This method gives the initial shape of the design of counterweight. A 

finished product will include chamfers and fillets on the link which will 

affect the mass of link and thus give rise to a small error in Center of Gravity 

location with some offset from the actual position. Iterative methods work by 

narrowing the solution to a convergence point from a starting guess. If the 

timesteps or number of iterations are not chosen appropriately, the final 

answer will have inaccuracies. However, this procedure is more accurate than 

the lengthy trial-and-error methods as this does not involve iterations. This 

method solves the single parametrized equation and gives result in the form 

of a real value. 
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