SOLVING LARGE SYSTEM OF LINEAR EQUATION USING ITERATIVE METHODS (SUCCESSIVE OVER-RELAXATION, CONJUGATE GRADIENT AND PRECONDITIONED CONJUGATE GRADIENT)

NURHANANI BINTI ABU BAKAR

Thesis Submitted in Fulfillment of the Requirement for Bachelor of Science (Hons.) Computational Mathematics in the Faculty of Computer and Mathematical Sciences Universiti Teknologi Mara

July 2017

DECLARATION BY CANDIDATE

I certify that this report and the project to which it refers is the product of my own work and that any idea or quotation from the work of other people, published or otherwise are fully acknowledged in accordance with the standard referring practices of the discipline.

Nurhanani binti Abu Bakar 2014848142

JULY 23, 2017

ii

ABSTRACT

Nowadays, system of linear equations are widely used especially in industrial. Application in industrial usually involve large problem. System of linear equation can be solved using direct and indirect method. Direct method required the use of inverse matrix to solve the problem. However, for large system of linear equation, finding an inverse could be difficult and time consuming. Therefore, indirect method in the form of numerical calculation is used. Such method are Successive Over-Relaxation, Conjugate Gradient and Preconditioned Conjugate Gradient. This research compare the performance of this three method to solve variety of system of linear equation from small scale to large scale in the form of number of iteration and CPU time. Numerical result show that the Conjugate Gradient method is the best to solve system of linear equation in terms of both number of iteration and CPU time. Above all, these three method could be used to solve system of linear equations.

4

TABLE OF CONTENTS

DECLARATION BY THE SUPERVISORS	i
DECLARATION BY CANDIDATE	ii
ABSTRACT	iii
ACKNOWLEGEMENT	iv
TABLE OF CONTENTS	v
LIST OF TABLES	ix
LIST OF FIGURES	xi
LIST OF ALGORITHM	xiii
LIST OF ABBREVIATIONS AND SYMBOLS	xiv
1.0 INTRODUCTION TO RESEARCH	1
1.1 Introduction	1
1.2 Background of Study	1
1.3 Problem Statement	5
1.4 Objectives	6
1.5 Significant of Project	7
1.6 Scope of Project	7
1.7 Project Benefits	8
1.8 Definition of Terms and Concepts	9
1.8.1 System of linear equations	9
1.8.2 Number of iterations	10
1.8.3 Error Analysis	10

		1.8.4 Central Processing Unit Times	10
		1.8.5 Successive Over-Relaxation method	11
		1.8.6 Conjugate Gradient method	11
		1.8.7 Preconditioned Conjugate Gradient method	12
	1.9	Literature Review	14
	1.10	Organization of Report	19
2.0	MET	HODOLOGY	22
	2.1	Introduction	22
	2.2	Research step	22
		2.2.1 Step 1 : Generate matrix data	22
		2.2.2 Step 2 : Selection of the method	23
		2.2.3 Step 3 : Construct computer programming code	24
		2.2.4 Step 4 : Execution of programming code	26
		2.2.5 Step 5 : Results analysis of each method	28
	1	2.2.6 Step 6 : Comparison of results	29
		2.2.7 Step 7 : Discussion and conclusion	29
	2.3	Fundamental of Successive Over-Relaxation Method	31
	2.4	Fundamental of Conjugate Gradient Method	32
	2.5	Fundamental of Preconditioned Conjugate Gradient Method	33
	2.6	Sample of matrix	34
	2.7	Conclusion	37
3.0	IMPL	EMENTATION	38
	3.1	Introduction	38