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ABSTRACT 

 

This paper aims to study the application of the Hilbert-Huang transform in 

automotive component strain data. The objective is to analyse time-frequency 

strain data and investigate specific and indicative behaviour patterns of the 

time-frequency parameters by using the Hilbert-Huang transform. Hilbert-

Huang transform is different from the traditional Fourier transform, which is 

used only for linear and stationary signals analysis. Fourier transform is 

different if compared with the Hilbert-Huang transform. Hilbert-Huang 

transform is designed to analysing the nonlinear and non-stationary signals 

and a more suitable tool for this kind of system. Empirical mode decomposition 

can characterise the intrinsic mode function to decompose the signal by mean 

of the time-frequency variations of signals. The empirical mode decomposition 

extracts both the original signals into a set of intrinsic mode functions which 

emphasises different oscillation mode with different amplitudes and 

frequencies. The intrinsic mode functions component produces significant and 

more effective physical analysis in the physical process at different time scales. 
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The results obtained can also be observed from numerical parameters that 

there are difference between the wide inter-subject differences in the variance 

and the contribution period of each signal mode in intrinsic time-frequency to 

the total number of signal content. The mean period for both first 

decomposition signals is ~2 and ~6. Reconstruction of new signal is done using 

the result of decomposition signal, intrinsic mode functions and the residue. 

The reconstruction signals have a difference in the maximum amplitude less 

than 1.136×10-13 and 2.273×10-13 that indicate unknown noise. This study 

represents the decomposition signal which was at high frequency in the 

histogram of Kernel estimation probability based on the strain data signal in 

the automotive component. 

 
Keywords: Time-frequency analysis; Hilbert-Huang transform; life; strain 

data 

 

 

Introduction 
 

Fatigue analysis is one of the analyses done on the automotive component to 

make sure the quality of component is in good condition. Material fatigue is 

among the most common safety issues which cause by cyclic loading and cause 

of failure. The existing methods in the time-frequency domain, widely used are 

Short-Time Fourier Transform (STFT), Wavelet Transform and S-Transform 

as mentioned by Yunoh [1]. The STFT had a fixed resolution and more 

applicable for real-time signal processing due to its short process time. While 

the Wavelet transform had good resolution and high performance in time and 

lower in frequency. It same with S-transform where it reduces the 

computational time. The signal represents a random phenomenon that depends 

on the time measurement. On account of the strain signal, the signal consists 

of an estimation of the cyclic loading such as stress and strain against time. 

The measurement of the signal regularly comprises of variation of frequency, 

amplitude, phase and energy. Djurović [2] stated that commonly the strain 

signal was found to exhibit a non-stationary behaviour. 

Empirical mode decomposition (EMD) works to reduce a signal into a 

number collection of intrinsic mode functions (IMFs) with “well-behaved” 

Hilbert transform. It is proven to be versatile in extracting signals from data, 

including the nonlinear and non-stationary processes. EMD is widely applied 

in the mechanical fields, such as mechanical fault diagnosis by Lei [3] and 

Singh [4]. The substance of the method is to identify the characteristic intrinsic 

oscillatory modes by their trademark time scales in the data observationally 

and then decompose the data accordingly. Caesarendra et al. [5] were 

monitoring the natural damage on slewing bearing. They investigate the real 

data of bearing rotating speed and damages which are introduced the artificial 

fault. Each intrinsic mode is in a narrow condition and dominated by scales. 
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Thus, as indicated by the scale, the solid implications of every mode can be 

recognized. Not same as the Fourier transform where the representation 

permits a simultaneous understanding of the signal in both frequency and time 

in Yao [6]. However, Yang et al. [7] believe that, since the last IMF is 

constantly monotonic, fine-to-coarse neglects to separate the underlying 

pattern of numerous signals such as those signals whose hidden pattern are not 

monotonic. So, he suggested another pattern of extraction method based on the 

correlation of different IMFs. He changes the main data signal from time to 

frequency domain. Then, use the Hilbert-Huang transform and ascertain the 

marginal spectrums of each IMF. Finally, reconstruct of IMFs based on the 

correlation between various IMFs. 

This study focuses on the time-frequency analysis technique, Hilbert-

Huang transforms and one of the methods in this technique is EMD that uses 

strain data signal which contains nonlinear and non-stationary behaviour. This 

study proposes the use of EMD to analyse and investigate specific and 

indicative behaviour patterns of time-frequency parameters. Fourier transform 

is not suitable to analyse nonlinear and non-stationary signal because Fourier 

transform was in the nonlinear and stationary signal. The decomposition is 

generated by the number of IMF. IMF is used to reconstruct the original signal. 

It shows statistically significant in this method. On the IMF, histogram exists 

to show high frequency on each decomposition signals. In addition, the time-

frequency analysis shows the shape of the probability density and cumulative 

density function based on the strain data signal of the suspension component 

in the automotive field. 

 

 

Methodology 
 

The methodology of this study is shown in Figure 1. The process flow starts 

by choosing the strain data signal. The signal is decomposed by the empirical 

mode decomposition which produces the specific independent component. The 

result of the decomposed signal and residue is used to recreate the new signal. 

The next step is to investigate the probability on Kernel distribution to observe 

the existence of a high-frequency condition in the decomposed signal. Lastly, 

each data signal was a plot in the reliability assessment by using two-parameter 

Weibull distribution to show the pattern of probability density function and 

cumulative density function. 
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Figure 1 The flow process of the study 

 

 

Type of signal 
This study used two strain data signals from a suspension system which are 

made of carbon steel. One strain signal was from Society of Automotive 

Engineers (SAE), SAESUS. Another strain signal was measured from road test 

of resident road condition [8]. The material of SAE1045 was chosen because 

it is commonly employed in automotive industries to fabricate the coil spring 

[9].  In this study, both signals were addressed as S1 for SAESUS and S2 for 

resident road signal. 

 

Hilbert-Huang Transform: Basic Empirical Mode Decomposition 
The decomposition of the original data signal into few of finite IMFs by 

empirical mode decomposition (EMD). Then, intrinsic mode functions (IMFs) 

are reconstructed individually utilizing fine-to-coarse and correlation 

technique. The EMD method involves sifting an ensemble of noise-added 

signal and made the mean as the final result. Like EMD, original data  x t  can 

also be represented as  

 

( ) ( )i nx t c t r                                                                         (1) 
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The residue nr appeared and the complete sifting process will stop, it 

becomes as a monotonic which the will no IMF can be extracted, and the detail 

can be found in Huang et al. [10]. There are two conditions which satisfy the 

function of the IMF definition. They are [11]: 

 The number of extrema and therefore the number of zero-crossings in 

the entire data series must be equivalent or vary at the most by one. 

 At any instance in time, the mean value of the envelope described by 

the local maxima and minima is zero. 

 

Reconstruction Signal from Each Component 
Fine-to-coarse is a reconstructed technique which depends on the alter of the 

data structure from the original. The procedures follow [12]: 

 Calculate the mean of the total of  1c t  to  ic t  for every segment 

(aside from the residue); 

 Use a t-test to recognize when i, the mean, significantly different from 

zero; 

 Once i is recognized as a huge change point, incomplete 

reconstruction with IMFs from this to the end is distinguished as the 

low-frequency mode while fractional reconstruction with different 

IMFs, recognized as a high-frequency mode. 

 The residue is specifically viewed trends of original data. 

 

 

The probability of Data Signal 
 

Histogram 
Histograms are one of density estimation methods that are used widely. The 

data range is divided into one set of successive intervals and not overlap called 

bins. The histogram bins are defined as the intervals, 

 

0 0, ( 1)x mh x m h               (2) 

 

for m  positive and negative integers, 0x  is the origin and h  is the bin width. 

For a set of n , observed data points are supposed to be samples of an unknown 

density function xp . The histogram is defined by 

 

 
number of observations in the same bin as 

ˆx

x
p x

nh
         (3) 
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The histogram can be generalised by allowing the bin widths to vary. Then the 

formula becomes 

 
number of observations in the same bin as 

ˆ
 (width of bin containing )

x

x
p x

n x
          (4) 

 

The Kernel Estimator 
The density of the kernel estimator is obtained by replacing the weight function 

in the expression of the naive estimators by kernel function  K x  which 

satisfies 

  1K x dx



                              (5) 

 

Then, the kernel estimator is given by 

 

 
1

1
ˆ

n i
x i

x x
p x K

nh h

 
  

 
                           (6) 

 

Here h  is the smoothing parameter. It controls the trade-off between the 

statistical significance of the probability density function (PDF) estimation and 

it is an effective resolution. 

 

Weibull Distribution 

By performing a simple linear regression, parameters  , the featured life we 

can be obtained, which is a scale, or spread, in data distribution and  , the 

shape parameter that indicates whether the failure rate is increasing. When a 

linear regression is performed, the estimation for the Weibull   parameter 

comes directly from the slope of the line. The estimation for the   parameter 

should be calculated as: 

 

b

e 

 
 
                            (7) 

 

The probability density function (PDF) and cumulative distribution function 

(CDF) for two-parameter Weibull distribution are provided as 

 

PDF:       
( )

( ) exp
1x x

f x









   
   

   
                                                    (8) 
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CDF:      ( ) exp
x

F x 1





  
    

   
                                                   (9) 

 

Mean-time-to-failure (MTTF), two-parameter Weibull distribution is 

calculated from the MTTF equations  

 

1
MTTF






 
  

 
                       (10) 

where (ᴦ) is gamma function. 

 

 

Result and Discussion 
 

To represent the kind of results obtained from empirical mode decomposition 

(EMD) in Figure 2 and Figure 3, the intrinsic mode function (IMF) components 

obtained from the two signals are shown. Both signals decomposition yields 

10 components and a residue. Each IMF has a particular amplitude and 

frequency content. 

The signals variation is due to the nature information of the IMFs. An 

exceptional advantage of the decomposition is that it is probable to observe 

directly the local variation in the strain data signal. The intrinsic oscillations 

appear naturally and based on the experience of the monitored or observed 

phenomena, the conclusions can be obtained the meaning from each mode and 

associated to some behaviours. In Figure 2 and Figure 3 there are residues that 

keep the mean without fast and short lasting oscillations. The trend is 

nonlinear, a hallmark of the non-stationary process is in negative as it declines 

over time scales. 
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Figure 2 Decomposition of S1 signal 

 

One of the necessary conditions for the basis to representing time series 

is nonlinear and non-stationary time is completeness, which ensures the level 

of accuracy of the expansion. Once the signals have been decomposed into 

IMFs, the criteria are marked numerically. Theoretically, completeness has 

been proven by Huang et.al [10]. 

The restructuring of the selected signal as an example is shown in Figure 

4. The original data is represented in the dashed line and the components are 

rebuilt in the solid line (red). By adding residue to each component, starting 

from the longest component to the most limited, IMF 1 in Figure 4 (k), the 

original signal is reproduced. When the reconstruction reaches IMF 3 and IMF 

2 in Figure 4 (i-j), the original series can be restored practically and the amount 

energy is contained in the original strain data signal. The new component, IMF 

1 does not significantly contribute to reassemble the signals. 
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Figure 3 Decomposition for S2 road signal 

 

Completeness is numerically checked for the whole strain data set. The 

difference between the reconstruction data obtained from the sum of all the 

IMFs and original data for the S1 road are shown in Figure 4 (l) where the 

maximum amplitude is less than 1.136×10-13 for the resident signal. For S1 

signal the maximum amplitude is less than 2.273×10-13 in Figure 5. This 

difference is due to the unknown noise existing in the first original signal [13]. 

Thus, the signal represents completeness that is established numerically in 

Figure 4. 
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(a) (b) 

  
(c) (d) 

  
(e) (f) 
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(g) (h) 

  
(i) (j) 

  
(k) (l) 

Figure 4 Reconstruction of S2 signal 

 

 
Figure 5 Difference of reconstruction for S1 signal 
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IMF Statistics 
The IMF component was existing was showing the frequency of each 

decomposition signals can change without affecting the time. The duration of 

the signal is inconsistent. The IMF period can be calculated by dividing the 

number of data points with the number of peaks or maxima. Therefore, if T is 

the length of the IMF component and s is the peak number, then the IMF period 

is equal to T/s.  

A graph in Figure 6 shows the difference mean period of IMFs between 

S1 and S2. The period is more noteworthy as the mode number is higher. After 

modification of the numerical result, in the entire data set collection, it is 

presumed that the EMD is a dyadic filter, which is a mean  

 

 
Figure 6 The mean period between S1 and S2 signal 

 

period of IMFs component for both roads was exactly increased starting from 

IMF 5 to IMF 10. The first mode of IMF has the smallest mean (~2 and ~6) 

and for progressive components, the mean period doubles. For the latest IMF 

mode, the instability of the period is evident from incentives that are close to 

zero to the maximum value reaching thousands, which are characteristic of 

moderate motion of oscillations. 

The mean duration was calculated, and the value is listed in Table 1. 

Each decomposition signal represents a specific behaviour found in both data 

signals. The segments demonstrate the data signals while every column is the 

content of the run of time in each decomposed mode. Regarding the doubling 

period, it is more obvious in the first mode and can not clearly verify for the 

last two modes, which is due to the increasingly close component of the noisy 

when the decomposition procedure approaches the residue. 

Observation in Figure 6, show that there is no significant period 

contrasts in the entire data signal while each mode been analysed 

independently and it notices that the period essentially changes in eighth IMF. 
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Table 1 Contribution of the period from the decomposition signal. 

IMF  S1 S2 

1 2.368 6.071 

2 4.129 10.430 

3 9.344 26.008 

4 22.619 66.239 

5 55.324 158.850 

6 112.891 324.540 

7 208.850 645.990 

8 410.852 1384.265 

9 928.222 3569.947 

10 2088.500 7536.555 

  

The average contribution of variance from each IMF is also calculated. 

These variances are used as a basic and intuitive benchmark to determine the 

importance of each IMFs of the original signal. The component with greater 

variance is more important. 

 

Table 2 Variance value of signal 

IMF SAESUS Resident 

Var Var 

(%) 

∑ (%) Var Var 

(%) 

∑ (%) 

1 10409.600 56.025 56.025 8.209 0.189 0.189 

2 1143.383 6.154 62.179 1.149 0.026 0.215 

3 1064.201 5.728 67.907 406.965 9.367 9.583 

4 1096.906 5.904 73.810 1037.362 23.878 33.461 

5 1893.335 10.190 84.000 441.611 10.165 43.625 

6 1218.010 6.555 90.556 224.795 5.174 48.800 

7 1056.199 5.685 96.240 151.360 3.484 52.284 

8 442.184 2.380 98.620 183.767 4.230 56.514 

9 180.364 0.971 99.591 1224.314 28.181 84.695 

10 76.022 0.409 100.000 664.943 15.305 100.000 

 

The contribution of each IMFs to the total variance also changes from 

signal to signal. Table 2 lists the contribution of each IMF to the total sum of 

variance for a selected subject in absolute terms, the percentage of total 

variance and the cumulative percentage variance contribution. The variance is 
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calculated by the sum of, 
 

2
X

N


, where   mean, N  the total number of 

data and X  is the data value. Using the variance value, it is possible to see the 

significant differences in the contribution of the variance of each IMF to the 

amount of variance in the selected signals.  

 

   

   

   
 

 

 

(a) Probability function density of S1 
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The probability distribution of the individual IMF calculated for both 

data signals is shown in Figure 7. According to the Central Limit Theorem, 

when the sample size is large, the IMF of high-frequency modes will have more 

oscillations and therefore the probability density function (PDF) will follow 

the normal distribution. This is shown from the normal distribution function 

installed with a red line. It is observed that the mean of these distribution 

functions is about zero in the whole set of data. The difference between the 

inter mode and intersubject is based on the deviation size of the normal 

distribution function. It is not a wide and narrow tendency to deviation from 

the normal distribution function when the number of modes increases. The 

deviation increases when the modes index increase in Figure 7 (a) and Figure 

7 (b) the increasing tendency that occurs in high-frequency modes. These will 

coincide with the previous results where it is noted that for phenomenon 

analysed in population, it is possible to select certain components of IMF as 

having the highest energy content. The probability density function energy for 

the normal distribution series should have 2x distribution. 
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(b) Probability function density of resident road 

Figure 7 Probability function density of each IMF signal using the Kernel’s 

distribution for (a) S1 and (b) S2 signal. 

 

The Weibull Distribution Analysis 
The Weibull distribution was known as the distribution of extreme values to 

control the load as a measurement of the period in the failure process. 

Probability density function (PDF) and cumulative distribution function 

(CDF), as shown in Figure 8 and Figure 9, characterisation of Weibull 

distribution based on the approximate form of the shape (β) and obtained in the 

normal probability graph [14]. They show the prediction of critical parameters 

that contribute to the fatigue life in each IMF. The shape parameter (β) is 

evaluated to be greater than 1 indicates that failure occurs was expected to the 

deteriorating of the damage for each IMF signal. 

 

  
(a) (b) 

Figure 8 The PDF Weibull of the number of cycles, (a) S1 and (b) S2 
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(a) (b) 

Figure 9 The CDF Weibull of the number of cycles, (a) S1 and (b) S2 

 

The graph shows in Figure 9, the cycle value in the safe range but there 

are two data for S1 and one data for S2 which are out of the distribution range. 

At that point, they are considered as being in failed condition. The mean load 

to failure was figured from the estimation of the shape parameter (β). The shape 

parameter (β) for S1 is 0.5645 and 0.4825 for S2 was estimated based on the 

Weibull distribution characterisation in Table 3. Based on the characteristic of 

the shape parameter, 0 < β <1, it indicates an increasing failure rate because 

this shape parameter is run to failure policy [15]. Mean-time-to-failure values 

are 282.589 cycle and 1487.922 cycles for S1 and S2. Mean-time-to-failure is 

the average time when the item will work before it fails. It is the mean lifetime 

of the item. With the data strain signals, the arithmetic average of the data does 

not provide a good measure of the centre because at least some of the failure 

times are unknown. 

 

Table 3. Theoretical properties of shape parameter, β 

Shape parameter, β Properties 

β < 1 Decreasing failure rate 

β = 1 Constant failure rate 

β > 1 Increasing failure rate 

 

 

Conclusion 
 

Empirical mode decomposition (EMD) method is widely used in engineering 

because it is intuitive, direct and adaptive. In implementing the EMD, it is 

imperative to build the IMFs to facilitate analysis and provide a diverse array 

of time scales data. The main reconstruction method is to see the difference of 

the decomposition signal to recreate original data. The difference of the 

maximum amplitude after reconstruction is less than 2.273×10-13 and 

1.136×10-13 for both signals. EMD was implemented to decompose the original 
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strain data signal by obtaining the IMF mode to demonstrate the non-stationary 

behaviour. The EMD analysis breaks the signal into a set of natural oscillations 

(IMFs) that have significant statistics to see the difference in duration and the 

contribution of the variance from each mode to the number of signals. 

 Besides that, the fatigue life cycle of the decomposed signal (IMFs) 

for both signals is seen through the Weibull distribution. The PDF and CDF 

for both signals were estimated the shape parameter for S1, 0.5645 and S2, 

0.4825 where the value between zero and one indicates a rising rate of failure. 

The mean-time-to-failure value of S1 and S2 are 282.589 cycle and 1487.922 

cycles respectively. From the data distribution, it shows the hidden information 

that the strain data signal is going to fail. This study was investigating the strain 

data signal behaviour with the decomposition method of Hilbert-Huang 

transform, empirical mode decomposition which can appear while it was 

hidden in the original signal. 
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