

THE EFFECT OF PROGRESSIVE CRACK ON DYNAMIC PROPERTIES OF SIMPLE BEAM USING EXPERIMENTAL MODAL ANALYSIS

WAN AZIZAN BIN WAN YAACOB (2006133717)

A thesis submitted in partial fulfillment of the requirements for the award of Bachelor Engineering (Hons) (Mechanical)

> Faculty of Mechanical Engineering Universiti Teknologi MARA (UiTM)

> > **MAY 2010**

"I declare that this thesis is the result of my own except the ideas and summaries which I have clarified their source. This report has not been accepted for any degree and is not concurrently submitted in candidature of any degree."

Signed	:
Date	: 24/05/10

WAN AZIZAN BIN WAN YAACOB

UITM No: 2006133717

ABSTRACT

The development of experimental modal analysis as a non-destructive method caused by it criteria which offer effective solutions to real life engineering problems. Along with the development of modern computer technology, experimental modal analysis has been proven as an option to analyze complicated structural vibration problems. The parameter gather by modal analysis can be used as indicator of structural safety. Natural frequency which is the main parameter in modal analysis can indicate the deflection of the structure which also significant in determines the structure's crack. The project focused on the identification of dynamic properties of simple mild steel beam with and without progressives crack. Two different cases are selected to been carry out for testing which are free hanging and simply supported condition. Progressive crack was seeded on a simple mild steel beam using band saw. For a different crack depth the dynamic properties were determined using EMA (Experimental Modal Analysis). This project covers a experimental technique by using db Real Time Analyzer (dbRTA) or 01db 4-channel equipment and ME' Scope software. The result obtained which include the mode shapes and natural frequency will be analyze and compare to the numerical model using Finite Element Analysis (ANSYS 5.7) software,

TABLE OF CONTENTS

CONTENTS	PAGE	
PAGE TITLE	I	
ACKNOWLEDGEMENT	п	
ABSTRACT	ш	
TABLE OF CONTENTS	IV	
LIST OF TABLES	VI	
LIST OF FIGURES	IX	
LIST OF GRAPHS	хі	

CHAPTER 1 INTRODUCTION

1.0	Introduction	1
1.1	Project Background	2
1.2	Objectives of Project	3
1.3	Significance of Project	3
1.4	Scope of Project	4
1.5	Methodology	4

CHAPTER 2 LITERATURE REVIEW

2.0 Literature Review 5

CHAPTER 3 FINITE ELEMENT ANALYSIS

3.0		Introduction	
3.1		Basic Concept Modal Testing Using FEM	
3.2		Process Flow in Finite Element Analysis	
3.3		Finite Element Analysis Principle Steps	10
	3.3.1	Model Construction	10
	3.3.2	Definition of the Material Properties	11
	3.3.3	Extrude the Mesh Area into Mesh Volume	12
	3.1.4	Boundary Conditions	13
	3.3.5	Solution	14
	3.3.6	Block Lanczos Method	15
	3.3.7	General Post-processing	16

CHAPTER 4 EXPERIMENTAL METHOD

4.0		Introduction	17
4.1		The Apparatus Equipment	18
	4.1.1	Boundary Condition	19
	4.1.2	Exciter	20