THE APPLICATION OF TENSILE FABRIC STRUCTURE IN MALAYSIA

ANIDAH HARTINI BINTI AG. SAID
99134160

BUILDING SURVEYING DEPARTMENT
FACULTY OF ARCHITECTURE, PLANNING AND SURVEYING
UNIVERSITI TEKNOLOGI MARA
SHAH ALAM, SELANGOR DARUL EHSAN

APRIL 2001
THE APPLICATION OF TENSILE FABRIC STRUCTURE IN MALAYSIA

This dissertation submitted in partial fulfillment of the requirements for honoring
of the Bachelor in Building Surveying (Honours)

Prepared by:
ANIDAH HARTINI BINTI AG. SAID
99134160

Under supervision:
PUAN SURIANI BINTI NGAH ABD. WAHAB

Author’s Signature : [Signature]

Checked and approved by : [Signature]

APRIL 2001
Tensile Fabric Roof Structure, which known established in Malaysia within twelve years believes, has met so inefficient development. Based on total of its utilization discovered around this country, it views that there is small quantity of applications. This circumstance is a reason it was not really popular in Malaysia. The structure fundamentally known as most giving aesthetics value to elements applies. As to variety types of roof in Malaysia, there are future developments should be reliable. The knowledge to this structure shall emphasize and this research finally a bit more showing few means to allow its developments.

This dissertation almost focusing on tensile fabric structure, which can be looking through few subheadings such its criteria, features, historical developments, construction techniques, the usage of materials, the manners of its application and also the Malaysian’s acceptance. As to clearly clarify, this research was enclosed with study cases as follows:-

1. National Stadium, Bukit Jalil
2. Mersing amphitheater, Mersing
3. J.B. Waterfront City Atrium, Johor Bahru

What is interesting to be an issue here is the level of Malaysian’s perception. Are they know or not and how far of their knowledge to this structure.
CONTENTS

<table>
<thead>
<tr>
<th>ABSTRACT</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACKNOWLEDGEMENT</td>
<td></td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td></td>
</tr>
<tr>
<td>LIST OF CHART</td>
<td></td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td></td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td></td>
</tr>
<tr>
<td>LIST OF PHOTOGRAPHS</td>
<td></td>
</tr>
<tr>
<td>LIST OF APPENDIX</td>
<td></td>
</tr>
</tbody>
</table>

1.0 INTRODUCTION ... 1

1.1 PREFACE ... 1
1.2 DEFINITION OF TOPIC 3
 1.2.1 Tensile .. 3
 1.2.2 Membrane ... 4
 1.2.3 Structure .. 4
1.3 STATEMENT OF ISSUE 5
1.4 OBJECTIVES OF STUDY 5
1.5 SCOPE OF STUDY .. 6
1.6 METHODOLOGY OF STUDY 7
 1.6.1 Collection of Data 8
 1.6.2 Writing and Analyzing Stage 9
 1.6.3 Conclusion and Recommendation 10
1.7 ARRANGEMENT OF CHAPTER 12

2.0 TENSILE FABRIC ROOF STRUCTURE 15

2.1 PREFACE ... 15
2.1.1 History .. 18
2.2 CLASSIFICATION ... 21
 2.2.1 Tensile Cable Suspended Structure 21
 2.2.2 Tensile Cable Supported Structure 22
2.3 CHARACTERISTICS ... 22
 2.3.1 Aesthetics Value 22
 2.3.2 Fire Safety ... 25
 2.3.3 Loads and Climate 25
 2.3.4 Lighting and translucency 26
2.4 PRINCIPLES .. 27
2.5 APPLICATION ... 30
 2.5.1 Social Application 31
 2.5.2 Commercial Application 32
 2.5.3 Military Application 33
 2.5.4 Application in Malaysia 34
2.6 CONCLUSION .. 36
CONTENTS

3.0 CONSTRUCTION TECHNIQUES .. 37

3.1 PREFACE .. 37
3.2 MATERIALS AND COMPONENTS ... 38
 3.2.1 Membrane (Fabric) ... 39
 3.2.1.1 Teflon (PTFE) coated Fiberglass 39
 3.2.1.2 PVC coated Polyester 41
 3.2.1.3 Top Coat Treatment of PVC Fabric 43
3.2.2 Cable .. 46
 3.2.2.1 Bundled cables .. 46
 3.2.2.2 Braided cables .. 48
 3.2.2.3 Stranded cables 48
3.2.3 Supporting Element .. 51
3.2.4 Connection .. 52
 3.2.4.1 Fabric to Fabric Connection 53
 3.2.4.2 Fabric to Rigid Edge Connection 53
 3.2.4.3 Fabric to Cable Connection 55
 3.2.4.4 Cable to Cable Connection 57
 3.2.4.5 Cable to Mast Connection 60
 3.2.4.6 Cable to Rigid Edge or Anchorage 61
3.2.5 Anchorage .. 62
 3.2.5.1 Anchorage for vertical tension 62
 3.2.5.2 Inclined Anchors 65

3.3 CONSTRUCTION TECHNIQUES .. 67
 3.3.1 Prefabrication ... 68
 3.3.2 Construction On-site 69

4.0 CASE STUDY .. 71

4.1 PREFACE .. 71
4.2 CASE STUDY 1: NATIONAL SPORTS COMPLEX, BUKIT JALIL 73
 4.2.1 Project Overview .. 73
 4.2.2 Design Concept and Features 74
 4.2.3 Main Component ... 75
 4.2.4 Fabrication of Component 76
 4.2.5 Construction Sequence 77
 4.2.5.1 Anchor Bolt ... 77
 4.2.5.2 Bearing Plate 78
 4.2.5.3 Triangular Support 79
 4.2.5.4 Compression Ring 79
 4.2.5.5 Cable and Center Column 80
 4.2.5.6 Steel Arch and Supporter Cable 86
 4.2.5.7 Membrane and Border Cable 87
 4.2.5.8 Catwalk ... 89
 4.2.5.9 Roof Drainage 90