APPLICATION OF BEZIER CURVE AND CUBIC TRIGONOMETRIC BEZIER WITH A SHAPE PARAMETER IN DESIGNING 3-DIMENSIONAL OBJECTS USING ROTATION SWEEP SURFACE METHOD

MUHAMMAD AMIRUL BIN ADENAN MUHAMMAD HILMI BIN ABD AZIB

Thesis Submitted in Fulfilment of the Requirement for Bachelor of Science (Hons.) Computational Mathematics in the Faculty of Computer and Mathematical Sciences Universiti Teknologi MARA

July 2019

DECLARATION BY CANDIDATE

I certify that this report and the project to which it refers is the product of my own work and that any idea or quotation from the work of other people, publish or otherwise are fully acknowledge in accordance with the standard referring practices of the discipline.

ill

MUHAMMAD AMIRUL BIN ADENAN

2016595885

MUHAMMAD HILMI BIN ABDUL AZIB

2016340663

11 July 2019

ABSTRACT

Computer-aided Geometric Design or CAGD is from in order to developed curves and surface modelling. CAGD makes much better in creation, modification, analysis and optimization design. A specific surface section can be designed in separately part and fitted together to display the total object. This study was focused on designing symmetrical 3 dimensional object which is a bottle. The shape and design are very important for marketing strategies. According to a study on the design of consumer, packaging looking at the effects of manipulations of shape orientation, curve, and alignment of graphical forms on consumer's assessments. The shape, size, and colour of the bottle also affecting to marketing strategies. In this study manipulation of the design was make based on the properties of the control point at the curves in two dimensional by using two methods Cubic Bezier Curve and Trigonometry Bezier a shape parameters method using Wolfram Mathematica software. The properties of the design of this study taken by nearest from real design properties and converted to twodimensional design. After the manipulation stage, the two-dimensional design of two methods converted to three-dimensional design using the Sweep Surface Rotation method. After that, the best design will be chosen after the manipulated stage. The properties of the best design were choosing based on the properties of easier to manipulate the curves that satisfied the consume needs and volume of the design that was nearest to the real design. Based on the result, it is shown that Trigonometry Bezier a shape parameter is the best method than Cubic Bezier Curve.

TABLE OF CONTENT

	Page
DECLARATION BY THE SUPERVISOR	i
DECLARATION BY CANDIDATE	11
ABSTRACT	111
ACKNOWLEDGMENT	iv
LIST OF TABLE	viii
LIST OF FIGURE	ix
1. INTRODUCTION OF RESEARCH	
1.1 Introduction	1
1.2 Background of the study	1
1.3 Problem statement	3
1.4 Objectives	5
1.5 Significance of the project	5
1.6 Scope of project	6
1.7 Project benefit	6
1.8 Organization of project	7
2. LITERATURE REVIEW AND METHODOLOGY	
2.1 Introduction	9
2.2 Definition of term and concepts	9
2.3 Literature review	11
2.3.1 Bezier Curve	11
2.3.1 Cubic Trigonometry a Shape Parameter	14

v

2.3.3 Sweep Surface	16
2.4 Research step	18
2.5 Conclusion	22
3. IMPLEMENTATION	
3.1 Introduction	23
3.2 Research Data	23
3.3 Bezier Curve	25
3.3.1 Manipulation	29
3.4 Cubic Trigonometry with a Shape Parameter	33
3.4.1 Manipulation	41
3.4.1.1 Manipulation control points	41
3.4.1.2 Manipulation control points and pa	arameter 48
3.5 Volume Calculation	51
3.6 Conclusion	56
4. RESULTS AND DISCUSION	
4.1 Introduction	57
4.2 Result of Cubic Bezier Curve	57
4.3 Result of Cubic Trigonometry with a Shape Paran	neter 59
4.3.1 Result of manipulate control points	60
4.3.2 Result of changed control points and parameters	eter 61
4.4 Comparison results	62
4.5 Conclusion	66