UNIVERSITI TEKNOLOGI MARA

CONSTRAINED MPC OF AGARWOOD HYDRO DISTILLATION POT FOR ENHANCEMENT IN PERFORMANCE AND ENERGY CONSUMPTION

NURUL NADIA BINTI MOHAMMAD

Thesis submitted in fulfillment of the requirements for the degree of **Doctor of Philosophy**

Faculty of Electrical Engineering

June 2019

AUTHOR'S DECLARATION

I declare that the work in this thesis was carried out in accordance with the regulations of Universiti Teknologi MARA. It is original and is the results of my own work, unless otherwise indicated or acknowledged as referenced work. This thesis has not been submitted to any other academic institution or non-academic institution for any degree or qualification.

I, hereby, acknowledge that I have been supplied with the Academic Rules and Regulations for Post Graduate, Universiti Teknologi MARA, regulating the conduct of my study and research.

Name of Student	:	Nurul Nadia Binti Mohammad
Student I.D. No.	:	2015480358
Programme	÷	Doctor of Philosophy in Electrical Engineering- EE950
Faculty	:	Electrical Engineering
Thesis	:	Constrained MPC of Agarwood Hydro Distillation Pot for Enhancement in Performance and Energy Consumption

Signature of Student	: :	Q2 ·		
Date		June 2019		

ABSTRACT

Agarwood is reputed to be most demanding and valuable wood in the world. Agarwood becomes an interest because of its usage such as in perfumery, medical and pharmaceutical purpose, incense and others. In extracting agarwood, hydro distillation is the most popular technique used in the industry. This technique is preferable due to factors of operational cost, safe to operate and environment friendly. There are several parameters that influencing the yield of the essential oil. One of them is temperature that be identified as the most influencing parameter in extracting the essential oil that effects the quality of the oil. Hence, this study is focused on the water temperature control of the agarwood extraction process. The water temperature exhibits nonlinear behaviour and the existence of advanced control like Model Predictive Control (MPC) is implemented to overcome this shortcoming. Previous studies have shown MPC has capability in handling the nonlinearity process better than conventional control technique. Generally, most of the extraction of agarwood is heated manually and took several hours or days to complete the whole process. Therefore, due to long extraction time, it will bring high energy consumption. Through the application of proper control technique, agarwood extraction process can produce better performance with low energy consumption. The performance has been evaluated based on transient response such as settling time, rise time and percentage of overshoot. In term of energy consumption, the evaluation is based on energy consumption index has been implemented. Three controllers namely PID control, Model Predictive Control (MPC) and self-tuning FuzzyPID are implemented in order to compare the transient response as well as energy consumption. First-Order-Plus-Dead-Time (FOPDT) model has been used to represent the system dynamic for the simulation studies. Real-time implementation has been carried out that based on the simulated controller. The evaluation on the performance and energy consumption of the proposed controllers were evaluated under simulation test and the findings showed MPC achieved better performance in term of transient response and improved in energy saving as compared to self-tuning FuzzyPID and PID control. The real-time application results indicated that MPC potentially managed to give good performance since it exhibited faster in rise time, settling time and produced small percentage of overshoot. In terms of energy usage, MPC significantly improved the energy consumption by 16.5 %, 18.7 % and 20 % as compared to PID control for step test, set point change test and load disturbance respectively.

TABLE OF CONTENT

CONFIRMATION BY PANEL OF EXAMINERS			ii		
AUTHOR'S DECLARATION			iii		
ABSTRACT			iv		
ACKNOWLEDGEMENT			v		
TAB	LE OF	CONTENT	vi		
LIST OF TABLES			x		
LIST OF FIGURES			xii		
LIST OF SYMBOLS					
LIST OF ABBREVIATIONS					
CHA	PTER (DNE: INTRODUCTION	1		
1.1	Resear	ch Background	1		
1.2	Problem Statement				
1.3	Hypotheses				
1.4	Objectives				
1.5	Scope of Works and Limitations				
1.6	Significance of Study				
1.7	Thesis Layout				
СНА	PTER 1	WO: LITERATURE REVIEW	9		
2.1	Introd	uction	9		
2.2	Essent	ial Oil	9		
	2.2.1	Agarwood	10		
2.3	Extrac	tion Method	10		
	2.3.1	Extraction of Agarwood	14		
	2.3.2	Significant Process Parameter	15		
	2.3.3	Effort on Temperature Control in Distillation Column	16		
2.4	4 Process Model				
	2.4.1	FOPDT Model	18		

2.5	PID Controller and Related Issues			
2.6	Fuzzy Logic Controller			
2.7	Self-tuning Fuzzy PID Control			
2.8	Model Predictive Controller			
2.9	Contro	ol Effort on Energy Consumption	34	
2.10	Summary			
CHAI	PTER 1	THREE: THEORETICAL BACKGROUND	39	
3.1	Introd	uction	39	
3.2	System	n Characterization	39	
	3.2.1	Process Reaction Curve	39	
	3.2.2	FOPDT Modelling	41	
3.3	PID C	ontrol	43	
	3.3.1	PID Tuning Rule	44	
	3.3.2	Filtering the Derivative Term	45	
3.4	Idea o	f Fuzzy Logic	45	
3.5	Basic	Concept of Fuzzy Set	46	
	3.5.1	Fuzzy Union (OR)	46	
	3.5.2	Fuzzy Intersection (AND)	47	
3.6	Fuzzy	Logic Controller	47	
	3.6.1	Selection of Controller Input	48	
	3.6.2	Membership Function	49	
	3.6.3	Fuzzy Control Rules	50	
	3.6.4	Defuzzification	51	
3.7	Self-tu	uning Fuzzy PID Control	51	
3.8	Model	Predictive Control	52	
	3.8.1	Formation of MPC	53	
3.9	Contro	oller Performance Evaluation	59	
	3.9.1	Transient Response	60	
	3.9.2	Evaluation of Energy Consumption	62	
3.10	Summary of Chapter 63			