UNIVERSITI TEKNOLOGI MARA

CHARACTERIZATION OF TMED-COPPER (I) IODIDE (CuI) THIN FILM AND PERFORMANCE FOR SOLID STATE DYE SENSITIZED SOLAR CELL APPLICATIONS

AYIB ROSDI ZAINUN

Thesis submitted in fulfillment of the requirements for the degree of **Doctor of Philosophy**

Faculty of Electrical Engineering

October 2012

AUTHOR'S DECLARATION

I declare that the work in this thesis/dissertation was carried out in accordance with the regulations of Universiti Teknologi MARA. It is original and is the result of my own work, unless otherwise indicated or acknowledged as referenced work. This thesis has not been submitted to any other academic institution or non-academic institution for any other degree or qualification.

I, hereby, acknowledge that I have been supplied with the Academic Rules and Regulations for Post Graduate, Universiti Teknologi MARA, regulating the conduct of my study and research.

Name of Student	: Ayib Rosdi Bin Zainun
Student ID No.	: 2008536547
Programme	: Doctor of Philosophy in Electrical Engineering
Faculty	: Faculty of Electrical Engineering
Thesis/Dissertation	: Characterization of TMED - Copper (l) Iodide (CuI)
Title	Thin Film and Performance for Solid State Dye
Signature of Student Date	sensitized Solar Cell Applications.

ABSTRACT

This thesis investigates the use of eco-friendly copper (I) iodide or cuprous iodide (CuI), a p-type semiconductor material, with the incorporation of a chelating agent or organic ligand, called tetramethylethylenediamine (TMED@TMEDA) in the preparation for solid-state dve-sensitized solar cells (DSSC). The CuI solution incorporated with the ligand was dispersed in acetonitrile solvent and deposited on glass and indium-doped tin oxide (ITO) substrates. The thin film is characterized to study its suitability for applications in dye sensitized solar cell (DSSC), a low cost solar cell but having high energy conversion efficiency. From the characterization, compared to that of pure CuI film, its optical properties show improved band-gap energy, while its electrical properties show improved conductivity. An efficient solidstate dye-sensitized solar cell (n-TiO2/dye/p-CuI) with improved stability was fabricated. The TMED-capped Cul crystals not only controls pore-filling of the dved TiO₂ layer but also improves the electrical contacts between the TiO₂ particles, which in general improves the efficiency of the DSSCs. Current-voltage characteristics of the cell showed a larger energy conversion, achieving higher energy conversion efficiency and improved stability.

TABLE OF CONTENTS

Page

AUTHOR'S DECLARATION	ii
ABSTRACT	iii
ACKNOWLEDGEMENT	iv
TABLE OF CONTENTS	v
LIST OF TABLES	ix
LIST OF FIGURES	х
LIST OF ABBREVIATIONS	xiv

CHAPTER ONE: INTRODUCTION

1.1	Development of CuI as Hole Conductor for DSSC	1
1.2	Objectives of The Research	4
1.3	Scope of Research	5
1.4	Thesis Organization	6

CHAPTER TWO: LITERATURE REVIEW

2.1	Introduction		8
2.2	History of PEC		9
2.3	Overview of Solid State DSSC		13
2.4	Fabrie	cation of Solid State DSSC	17
2.5	Probl	ems in Solid State DSSC	18
	2.5.1	Contact of Dye Molecule and Hole Conductor	18
	2.5.2	Electron-Hole Recombination	20
	2.5.3	Interfacial Blocking Layers	21
	2.5.4	Device Operational Stability	24
	2.5.5	Chelating Agent	26
2.6	Sumn	nary	27

CHAPTER THREE: METHODOLOGY

3.1	Introd	oduction	
3.2	Clean	ing of Substrates	
3.3	Preparation of Copper (I) lodide (Cul) Thin Films		31
	3.3.1	Preparations of Cul Thin Films at Different Molar	32
		Concentration	
	3.3.2	Effect of Annealing Temperature on CuI Thin Films at	34
		Different Molar Concentration	
	3.3.3	Preparation of Cul Thin Films Incorporation of TMED	35
	3.3.4	Effect of Annealing Temperature on CuI Thin Films That	36
		Incorporated TMED	
3.4	Depos	sition of TiO2/dye/CuI Solid State DSSC	37
3.5	Characterization Method		40
	3.5.1	Measurement of pH and Conductivity	41
	3.5.2	Particles Size Measurement	42
	3.5.3	Surface Morphology	42
	3.5.4	Crystalline Properties	43
	3.5.5	Characterization of Optical Properties	44
	3.5.6	Luminescence properties	46
	3.5.7	Current-Voltage Measurement	46
3.6	Summ	nary	48

CHAPTER FOUR: CHARACTERIZATION OF NANOPARTICLES COPPER (I) IODIDE (CuI) THIN FILMS

4.1	Introd	ntroduction	
4.2	Chara	cterization at Different Molar Concentration of Cul Solution	50
	4.2.1	Conductivity and pH	50
	4.2.2	Particles Size Measurement	51
	4.2.3	Surface Morphology of CuI Thin Film	53
	4.2.4	XRD Spectra	55
	4.2.5	UV-Vis-NIR Spectra	57
	4.2.6	Photoluminescence (PL) Spectra	60
	4.2.7	Electrical Properties of CuI Thin Films	61