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ABSTRACT 

This paper presented the modeling of simplified 3D woven fabric in tensile 
and bending behavior. The modeling technique used to simulate woven fabric 
using finite element analysis and incorporated with Abaqus software. 3D 
means that the woven fabric features in software having three dimensions 
which are horizontal, vertical, and depth (x, y, and z) dimensions. The 
simplified 3D woven fabric model is treated with various parameters on 
modulus and mesh size to study realistic stress-strain and force-displacement 
fields. Therefore, the important detailed FEA for modeling woven fabric 
requires setting geometric parameters such as dimension fabric structures, 
loads, pressure, boundary conditions to simulate the successful assumption 
on the mechanical performance of the fabric. The model is first used to 
simulate tensile and bending under various modulus. Each simulation shows 
the highest modulus give the higher stress and lowest strain for tensile 
simulation and higher force and lowest displacement for bending simulation. 
In a second step, different mesh size has been added to the model with the 
same modulus, show the smaller mesh size gives the accurate analysis. The 
prediction results of tensile and bending simulation presented in strain-stress 
and force-displacement curve, respectively based on modulus and mesh size. 
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INTRODUCTION 

In a recent development, textile material became the demand application 
that is widely used in the fashion industry and high-performance industry 
such as automotive, medicine, civil engineering, construction, and electrical 
due to their advantages on mechanical properties [1]. The study of tensile 
and bending are the common method to identify mechanical properties in 
textile materials. One of the difficulties to investigate fabric mechanical 
performance is due to the complex geometry of textile materials. For 
example, Shehzad et al. [2]  studied the tensile behavior of fabric membrane 
structure. The research needs to understand the concept of fabric properties 
in order to observe and analyze tensile performance. Alam et al. [3] 
investigated the relationship between fiber, yarn, and fabric on bending 
properties. The study claims that the bending and shear rigidity of plain-
woven fabric is mostly influenced by yarn count followed by fabric sett. 

The finite element analysis (FEA) can provide the solution to this 
problem by successfully simulating the realistic model and analyzing 
various kinds of complicated textile structures [4]. The complex equation 
from physical testing would lead to inaccurate results of the analysis. Thus, 
the numerical approach of FEA has been widely used in the textile sector 
to overcome this issue. 

Generally, numerical approaches [5]  are more accurate than analytical 
analysis [6]. But solving process of numerical approaches can be time 
consuming and the user need to understand in detail CAD/CAE model and 
finite element methods. However, the model can be improved by generating 
simplified model geometry in the right way to show accurate results [6]. 

The objective of this research is to model, simulate and analyze the 
tensile and bending behavior of the 3D simplified woven fabric using 
finite element analysis. To achieve this objective, three dimensional (3D) 
simplified woven model was developed by using Abaqus software and FEA 
tools. The simulation is set up with the different values of modulus and 
mesh size to study the stress-strain value for tensile simulation and force-
displacement for bending simulation.
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METHODOLOGY

In this paper, the study of the mechanical behavior of simplified 3D woven 
fabric is demonstrated in finite element analysis (FEA). The coordination of 
woven fabric was set up in 3-dimensions to the x-direction, y-direction, and 
z-direction as shown in Figure 1. Woven fabric is produced by interlacing 
two sets of yarns, which are warp and weft yarns. Warp yarn runs in a 
lengthwise direction and needs to be prepared earlier in the weaving 
preparation process. Weft yarn is introduced in the weaving process and 
runs in a perpendicular direction to warp, which is often regarded as a 
width direction. Yarn interlacing in woven fabric depended upon weave 
structures and yarn linear density. For example, plain weave is the most 
interlaced extensive structure as yarns will have to move above and below 
its counterpart yarns. Additionally, with thicker yarn more thickness 
and space will be generated each time the yarn has to bend during the 
interlacing process. These have created complexities in establishing woven 
fabric models for finite element analysis (FEA) in terms of geometries 
and computation time. For this reason, the woven fabric model has been 
simplified as a rectangular 3D plate shape for FEA analysis.
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Figure 1: Simulation of woven plate with finite element process 
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                          (h) Bending simulation on woven plate

 Figure 1: Simulation of woven plate with finite element process
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a load of tensile simulation is set up in x-direction with an appropriate 
magnitude of 200 N, producing an outward force on a fabric model. Figure 
1(d) presents the bending woven plate was applied with a load of 0.1 N on 
the partition part, producing force acting towards the woven plate. Figure 
1(e) illustrates the next process which is mesh. In the meshing process, 
the model was broken up (discretize) into small elements. Each element 
was connected with the nodes to help in accurate calculation and results in 
analysis. The job was performed calculation in ‘abaqus solver’ as shown in 
Figure 1(f). The last process of FEA is the visualization process also known 
as post-processing. The visualization of tensile and bending simulation was 
demonstrated in Figure 1(g) and Figure 1(h), respectively. In this section, 
the simulation of woven fabric and computed results were displayed in the 
software. 

Table 2 shows the model simulations were carried out from initial value 
of Young's modulus and has been reduced to 10 % and 20 %, respectively. 
The different modulus to allow comparison of stress-strain in tensile test 
and force-displacement in bending test. Table 3 shows the mesh size used 
for tensile analysis with 10861 MPa has been repeated with different seed 
sizes of 1.32 and 1.00, which were reduced to 20 % and 40 %, respectively.

Table 2: Young’s modulus for tensile and bending simulation
Value Young’s modulus (MPa)

Initial 10861

Less than 10 % 9775

Less than 20 % 8689

Table 3: Mesh size for tensile simulation
Value Seeding factor

Initial 1.65

Less than 20 % 1.32

Less than 40 % 1.00

The tensile and bending behavior of woven fabrics were performed 
using finite element analysis. Both simulations were set up with boundary 
condition to constraint the fabric and an appropriate load was applied to 
give force on a material. Finite element (FE) model was able to simulate the 
tensile test similar to the experimental testing where the fabric was pulled 
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to its breaking point to measure the strength and elongation properties of 
textile material. Then, the analysis of tensile behavior was implemented 
with different mesh sizes based on a number of elements and nodes in 
FEA to have a comparison of the suitable mesh size for the analysis. The 
simulation results of stress-strain in the tensile were plotted in the graph 
to allow comparison between those parameters as shown in Figure 2 and 
Figure 3. The stress and strain relation comes from Hooke’s law. Hooke’s 
law can be defined as equation below: 

                                                                                                        (1)
   
where σ is the stress (MPa), E is the Young’s modulus (N/m²) and ε 

is the strain (m/m).  

The strain value is calculated as follow:

                                                                                                        (2)

where ε is the strain, ∆L is the change in length (m) and L is the 
original length (m).

The next analysis was bending simulation in 3D woven fabric model. 
Bending simulation also successfully simulates physical stiffness testing 
where the fabric was bent under its own weight and then the bending length 
was measured. The result was displayed in force-displacement relationship 
as shown in Figure 4. Compared to tensile, the value of stress is not suitable 
used for bending properties. This is because force is external force and stress 
is generated from the force applied to a material. Therefore, the force value 
in bending was obtained from stress value by using the calculation as follow:                                                       
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where F is the force per unit area (N), σ is the stress (MPa) and A is 

cross-sectional area (m²).

of 0.1 N on the partition part, producing force acting towards the woven plate. Figure 1.e illustrates the 
next process which is mesh. In the meshing process, the model was broken up (discretize) into small 
elements. Each element was connected with the nodes to help in accurate calculation and results in 
analysis. The job was performed calculation in ‘abaqus solver’ as shown in Figure 1.f. The last process 
of FEA is the visualization process also known as post-processing. The visualization of tensile and 
bending simulation was demonstrated in Figure 1.g and Figure 1.h, respectively. In this section, the 
simulation of woven fabric and computed results were displayed in the software.  

Table 2 shows the model simulations were carried out from initial value of Young's modulus 
and has been reduced to 10% and 20%, respectively. The different modulus to allow comparison of 
stress-strain in tensile test and force-displacement in bending test. Table 3 shows the mesh size used for 
tensile analysis with 10861 MPa has been repeated with different seed sizes of 1.32 and 1.00, which 
were reduced to 20% and 40%, respectively. 

 
Table 2: Young’s modulus for tensile and 

bending simulation 

Value Young’s modulus (MPa) 

Initial 10861 

Less than 10% 9775 

Less than 20% 8689 

 

Table 3: Mesh size for tensile simulation 

 Value Seeding factor 

Initial 1.65 

Less than 20% 1.32 

Less than 40% 1.00 
 

  

 

The tensile and bending behavior of woven fabrics were performed using finite element 
analysis. Both simulations were set up with boundary condition to constraint the fabric and an 
appropriate load was applied to give force on a material. Finite element (FE) model was able to simulate 
the tensile test similar to the experimental testing where the fabric was pulled to its breaking point to 
measure the strength and elongation properties of textile material. Then, the analysis of tensile behavior 
was implemented with different mesh sizes based on a number of elements and nodes in FEA to have a 
comparison of the suitable mesh size for the analysis. The simulation results of stress-strain in the tensile 
were plotted in the graph to allow comparison between those parameters as shown in Figure 2 and 
Figure 3. The stress and strain relation comes from Hooke’s law. Hooke’s law can be defined as 
equation below:  

𝜎𝜎 =  𝐸𝐸𝐸𝐸

                                                                                                                                                               (1) 

where 𝜎𝜎 is the stress (MPa), E is the young’s modulus (N/m²) and 𝐸𝐸 is the strain (m/m).   

The strain value is calculated as follow: 

𝐸𝐸 = ∆ 𝐿𝐿
𝐿𝐿

                                                                                                                                                               (2) 

where 𝐸𝐸 is the strain, ∆ 𝐿𝐿 is the change in length (m) and 𝐿𝐿 is the original length (m). 

of 0.1 N on the partition part, producing force acting towards the woven plate. Figure 1.e illustrates the 
next process which is mesh. In the meshing process, the model was broken up (discretize) into small 
elements. Each element was connected with the nodes to help in accurate calculation and results in 
analysis. The job was performed calculation in ‘abaqus solver’ as shown in Figure 1.f. The last process 
of FEA is the visualization process also known as post-processing. The visualization of tensile and 
bending simulation was demonstrated in Figure 1.g and Figure 1.h, respectively. In this section, the 
simulation of woven fabric and computed results were displayed in the software.  

Table 2 shows the model simulations were carried out from initial value of Young's modulus 
and has been reduced to 10% and 20%, respectively. The different modulus to allow comparison of 
stress-strain in tensile test and force-displacement in bending test. Table 3 shows the mesh size used for 
tensile analysis with 10861 MPa has been repeated with different seed sizes of 1.32 and 1.00, which 
were reduced to 20% and 40%, respectively. 

 
Table 2: Young’s modulus for tensile and 

bending simulation 

Value Young’s modulus (MPa) 

Initial 10861 

Less than 10% 9775 

Less than 20% 8689 

 

Table 3: Mesh size for tensile simulation 

 Value Seeding factor 

Initial 1.65 

Less than 20% 1.32 

Less than 40% 1.00 
 

  

 

The tensile and bending behavior of woven fabrics were performed using finite element 
analysis. Both simulations were set up with boundary condition to constraint the fabric and an 
appropriate load was applied to give force on a material. Finite element (FE) model was able to simulate 
the tensile test similar to the experimental testing where the fabric was pulled to its breaking point to 
measure the strength and elongation properties of textile material. Then, the analysis of tensile behavior 
was implemented with different mesh sizes based on a number of elements and nodes in FEA to have a 
comparison of the suitable mesh size for the analysis. The simulation results of stress-strain in the tensile 
were plotted in the graph to allow comparison between those parameters as shown in Figure 2 and 
Figure 3. The stress and strain relation comes from Hooke’s law. Hooke’s law can be defined as 
equation below:  

𝜎𝜎 =  𝐸𝐸𝐸𝐸

                                                                                                                                                               (1) 

where 𝜎𝜎 is the stress (MPa), E is the young’s modulus (N/m²) and 𝐸𝐸 is the strain (m/m).   

The strain value is calculated as follow: 

𝐸𝐸 = ∆ 𝐿𝐿
𝐿𝐿

                                                                                                                                                               (2) 

where 𝐸𝐸 is the strain, ∆ 𝐿𝐿 is the change in length (m) and 𝐿𝐿 is the original length (m). 

The next analysis was bending simulation in 3D woven fabric model. Bending simulation also 
successfully simulates physical stiffness testing where the fabric was bent under its own weight and 
then the bending length was measured. The result was displayed in force-displacement relationship as 
shown in Figure 4. Compared to tensile, the value of stress is not suitable used for bending properties. 
This is because force is external force and stress is generated from the force applied to a material. 
Therefore, the force value in bending was obtained from stress value by using the calculation as follow:                                                        

𝐹𝐹 =  𝜎𝜎 × 𝐴𝐴

                                                                                                                                                               (3) 
where F is the force per unit area (N), σ is the stress (MPa) and A is cross-sectional area (mm²). 
 

Results and Discussion  

The test simulation was modeled in Abaqus software with FEA tools. Three simulations were 
prepared for each analysis. The young modulus and mesh sizes were varied as shown in Figure 2, Figure 
3, and Figure 4.  
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RESULTS AND DISCUSSION 
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 Figure 3: Strain-stress curve by the mesh size 

In this analysis, the model plates were performed with the same 
modulus value but different mesh sizes by referring to Table 2. Figure 3 
clearly shows the stress-strain value for different mesh sizes. For comparison, 
a mesh size of 1.65 was used as the standard sample. The decreasing mesh 
size for 1.32 and 1.00 was reduced by 20 % and 40 %, respectively from 
the original mesh size. It shows the model with the smallest mesh size gives 
the highest value of R-squared, where the data mostly fall on the regression 
line compared to a model with a bigger mesh size [10]. According to the 
theory of finite element analysis, the smaller mesh size will increase the 
number of elements and nodes, resulting in higher accuracy of results in 
analysis. Therefore, the mesh size in finite element analysis has a greater 
effect on the result’s accuracy.

 

Figure 4: Force-displacement curve by the bending modulus
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In this analysis, the model plates were performed with the same modulus value but different 
mesh sizes by referring to Table 2. Figure 3 clearly shows the stress-strain value for different mesh 
sizes. For comparison, a mesh size of 1.65 was used as the standard sample. The decreasing mesh size 
for 1.32 and 1.00 was reduced by 20% and 40%, respectively from the original mesh size. It shows the 
model with the smallest mesh size gives the highest value of R-squared, where the data mostly fall on 
the regression line compared to a model with a bigger mesh size (Editor, 2013). According to the theory 
of finite element analysis, the smaller mesh size will increase the number of elements and nodes, 
resulting in higher accuracy of results in analysis. Therefore, the mesh size in finite element analysis 
has a greater effect on the result’s accuracy. 
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Figure 4 presents the bending behavior of the model simulation in 
force-displacement relations. In this analysis, the bending performance of 
woven fabrics were evaluated with 10861 MPa, 9775 MPa and, 8689 MPa 
based on Table 2. The value of force in bending simulation is calculated 
by equation 3. Based on equation 3, woven fabric with larger stress needs 
a stronger force to bend the fabric. It shows 10861 MPa with the highest 
modulus required larger force and the lowest displacement compared to 
another model. Therefore, the higher modulus results in higher stress at the 
same time larger force required in bending performance. 

CONCLUSION 

The finite element method is capable of providing a clear simulation 
of woven fabric for tensile and bending performance. The process is 
successfully achieved when the appropriate parameter and information 
related to textile for the analysis is given to the software system. Both results 
on stress-strain of tensile properties and force-displacement of bending 
are influenced by the change on modulus. Young modulus increment has 
resulted in higher stress to deform a material and lower strain value. FEA 
can minimize error on mechanical analysis by increasing the number of 
nodes and elements in a model. Additionally, the right selection of boundary 
conditions and load resulting in accurate mechanical analysis of the woven 
fabric. It is proved that FEA has an ability to study the mechanical behavior 
of various types of textile structures. 
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