UNIVERSITI TEKNOLOGI MARA MALAYSIA

TREATMENT OF MUNICIPAL SOLID WASTE ODOUR USING ELECTRON BEAM IRRADIATION TECHNIQUE

MOHD. NAHAR OTHMAN

Thesis submitted in fulfillment of the requirements of the degree of **Doctor of Philosophy**

Faculty of Chemical Engineering

November 2012

AUTHOR'S DECLARATION

I declare that the work in this thesis was carried out in accordance with the regulations of Universiti Teknologi MARA. It is original and is the result of my own work, unless otherwise indicated or acknowledged as referenced work. This thesis has not been submitted to any other academic institution or non-academic institution for any degree or qualification.

I, hereby, acknowledge that I have been supplied with the Academic Rules and Regulations for Post Graduate, Universiti Teknologi MARA, regulating the conduct of my study and research.

:

:

•

:

:

:

:

Name of Student Student I.D. No. Programme Faculty Thesis Title

Signature of Student Date

Mohd. Nahar Bin Othman
2005672398
Doctor of Philosophy (Science)
Chemical Engineering
Treatment of Municipal Solid Waste Odour
Using Electron Beam Irradiation Technique
11

November 2012

ABSTRACT

Environmental Quality, Clean Air Regulation was enforced since 1st October 1978 in Malavsia. However, it does not contain any standard parameters for odour control and discharge to the environment. In order to respond to various odour complaints and handle odour problems in Malaysia, a regulation for odour control is necessary. Since Malaysia will be declared a developed country in the year 2020, environmental legislations of the country have to be improved to the standards of a developed country. The objective of this research is to study the odour problems in Malaysia, specifically for Municipal Solid Waste (MSW) odour, to identified the sources of odour from MSW, odour measurement and analytical by olfactometer, correlation between odour unit and concentration in ppmv and ppby, odour treatment using electron beam irradiation technique, odour kinetic and dispersion modeling. In this study, the odorous gas such as Benzene (aromatic odour), Dimethylsulfide (rubbish odour) and Trimethylamine (fishy odour) are also used as odours samples. Odorous gas samples were treated by using the powerful energy produced by electron beam. Ambient and odorous gas samples were also collected from Refuse Derived Fuel (RDF) factory and in surrounding area in Semenvih, Selangor and these samples were analyzed by using DynaScent Digital Olfactometer. The results of the emission measurement and the ambient air collected around the study area showed that there are various factors that affect the distribution of odorous gas to the complaint area that is only less than 1.5 km from the factory. The result also shows that there is great potential in using the electron beam irradiation technique in order to solve the odour problem.

TABLE OF CONTENTS

AUTHOR'S DECLARATION	ii
ABSTRACT	iii
ACKNOWLEDGMENTS	iv
TABLE OF CONTENTS	v
LIST OF TABLES	xii
LIST OF FIGURES	xiv
LIST OF TEMPLATES	xvii
LIST OF ABBREVIATIONS	xix

CHAPTER ONE : INTRODUCTION

1.1	Research Background	1
1.2	Odour Problem in Malaysia	3
1.3	Rational of the Study - Odour pollution	4
1.4	Problem Statement	7
1.5	Objectives of Research	10
1.6	Research Scope and Limitations	11
1.7	Structure of thesis	14

CHAPTER TWO : LITERATURE REVIEW

2.1	History of odour pollution		
2.2	Causes of odour pollution		17
	2.2.1	Types of odour released during decomposition	19
2.3	Source	arces of Odour pollution	
2.4	Odour characteristics		24
	2.4.1	An Environmental Odour Wheel	25
	2.4.2	Odorant concentration	25

	2.4.3	Odour intensity	27
	2.4.4	Hedonic assessment	28
	2.4.5	Odour rating method	29
2.5	Odour	related regulations	30
	2.5.1	Emission Standard for Odour Pollutants in Japan	31
2.6	Human	perception mechanism	36
	2.6.1	Anatomical and physiological principles	39
	2.6.2	Special aspects of the perception of smell	42
2.7	Odour	abatements technologies	44
	2.7.1	Adsorption	45
	2.7.2	Liquid scrubbing	45
	2.7.3	Biofiltration	46
	2.7.4	Bioscrubbers	48
	2.7.5	Chemical scrubbing	50
	2.7.6	Incineration	52
	2.7.7	Ultra violet Irradiation / Neutrapol	53
	2.7.8	Condensation	54
	2.7.9	Odour Removal Efficiency	54
	2.7.10	Comparison with other odour control methods	55
2.8	Odour treatment using electron beam		56
2.9	Separation of RDF Waste		57
	2.9.1	Decomposition of Fresh Waste	58
	2.10	Anshumali Kinetic Model Reaction	58
2.11	Atmosp	heric Dispersion Models	61
	2.11.1	Source Characteristics	63
	2.11.2	Odour Modelling Characteristics	65
	2.11.3	Approved Dispersion Models	67
	2.11.4	Different Levels of Assessment	69
	2.11.5	Impact Assessment Methodology	70
	2.11.6	Input Data Collection	70
	2.11.7	Dispersion Modelling	71
	2.11.8	Processing Dispersion Model Output Data	71