HIGH LEVEL SYNTHESIS FOR PARALLEL SCAN

INSTITUT PENGURUSAN PENYELIDIKAN UNIVERSITI TEKNOLOGI MARA 40450 SHAH ALAM, SELANGOR MALAYSIA

BY :

RIHANA YUSUF NORSABRINA SIHAB ZURITA ZULKIFLI

JAN 2009

TABLE OF CONTENTS

DECLARATIONS

ACKNOWLEDGEMENTS	i
TABLE OF CONTENTS	ii-iv
LIST OF FIGURES	v-vi
LIST OF TABLES	vii
ABBREVIATIONS	ix
LIST OF SYMBOLS	x
ABSTRACT	xi

CHAPTER 1 INTRODUCTION

1.0	Chapter Overview	1
1.1	Background	1
1.2	Objective of the Project	3
1.3	Scope of Works	3
1.4	Organization of this Thesis	4

CHAPTER 2 LITERATURE REVIEW

2.0	Chapter Overview	5
2.1	Introduction	5
2.2	Structured and Unstructured DFT Techniques	6
2.3	Ad Hoc Technique	6

2.4	Struct	ured Techniques	8
	2.4.1	Scan Design Approaches	8
	2.4.2	Built-in Self-test (BIST)	16
	2.4.3	Boundary Scan	19
2.5	Parall	el Scan	21
	2.5.1	Advantages of Parallel Scan	23
2.6	Fault	Models	24
	2.6.1	Stuck-at-fault Model	25
	2.6.2	Functional Fault Model	26

CHAPTER 3 RESEARCH PROCEDURE

3.0	Chapter Overview	28
3.1	Introduction	28
3.2	Parallel Scan Implementation	29
	3.2.1 Scannable D-Flip Flop	30
	3.2.2 Full Adder Design	30
	3.2.3 Random Counter Design	32
3.3	Testing Implementation	32
3.4	Testing Procedure	33
	3.4.1 Single stuck-at Fault Model	33

CHAPTER 4 RESULTS AND DISCUSSION

4.0	Chapter Overview	39
4.1	Introduction	39
4.2	Simulation Results of Parallel Scan Method	39

4.3	Testing Time in Parallel Scan and Serial Scan	42
4.4	Area Overhead in Parallel Scan and Serial Scan	43
4.5	Experimental Result of Single Stuck-at Fault	45
	4.5.1 Fault Coverage	47

CHAPTER 5	CONCLUSION AND FUTURE DEVELOPMENT	48
5.0	Chapter Overview	48
5.1	Conclusion	48
5.2	Future Development	49

50

REFERENCES

APPENDIX

ABSTRACT

As digital systems become more complex, they become much harder and expensive to test. One solution to this problem is to add logic to the Integrated Circuit (IC) so that it can be testable. This concept is an important aspect to be considered in early stage of IC design process. This is different from traditional test philosophy, where the testing is carried out after the IC design has been completed. In this paper, the scanbased architecture which is widely used in modern design for testing purpose will be employed in testing the IC circuit. However, the applicability of scan testing is being severely challenged recently by four problems which are area overhead, test application time, power consumption, and test-related yield loss. This project addresses the issue of reducing test application time using a parallel scan method in which the test vector has parallel loading and unloading sequence mechanism that can shorten the test application time. A 2-bit Full Adder circuit is utilized as a Circuit Under Test (CUT) while the VHSIC Hardware Description Language (VHDL) is used as a tool to design the whole system and will be run on MAX+plus II platform.