HEAVY METAL REMOVAL OF INDUSTRIAL WASTEWATER USING CONSTRUCTED WETLAND

INSTITUT PENGURUSAN PENYELIDIKAN UNIVERSITI TEKNOLOGI MARA 40450 SHAH ALAM, SELANGOR MALAYSIA

DISEDIAKAN OLEH :

NUR FADZEELAH BINTI ABU KASSIM MUHAMMAD ZAHIRUDDIN BIN RAMLI DR. SHANKER KUMAR SINNAKAUDAN

DISEMBER 2010

TABLE OF CONTENTS

CONTENTS	TITLE	PAGE
LIST OF RESEARCH MEMBERS		i
ACKNOWLEDGEMENT		ii
LIST OF TABLES		vii
LIST OF FIGURES		viii
LIST OF PLATES		ix
ABSTRACT		x

CHAPTER 1: INTRODUCTION

1.1	Resea	rch Background	1
	1.1.1	Wastewater	1
	1.1.2	Wastewater Treatment	3
		1.1.2 (a) Conventional Method	3
		1.1.2 (b) Ecological Method	4
1.2	Proble	m Statement	5
1.3	Resea	rch Objectives	5

CHAPTER 2: LITERATURE REVIEW

2.1	Wetland In General		7
	2.1.1	Types of Wetland in General	8
		2.1.1 (a) Natural Wetland	8
		2.1.1 (b) Constructed wetland	9
2.2	Mecha	nism of Wetland Process	10
	2.2.1	Physical Removal Process	11
	2.2.2	Biological Removal Process	11

	2.2.3	Chemical Removal Process	12
2.3	Constr	ucted Wetland	13
	2.3.1	Types of Constructed Wetland	13
		2.3.1 (a) Surface Flow System (SF)	14
		2.3.1 (b) Subsurface Flow System (SSF)	15
		2.3.1 (c) Floating Aquatic Plant System (FAP)	15
	2.3.2	Advantages and Limitations of Constructed	16
		Wetland System	
2.4	Vegeta	ation Plant Species	18
	2.4.1	Free Floating Aquatic Plants	19
	2.4.2	Submerged Plants	20
	2.4.3	Emergent Plants	21
	2.4.4	Vegetation of Ipomoea Aquatica (Kangkung)	22
2.5	Nitroge	en	23
	2.5.1	Nitrogen	23
	2.5.2	Inorganic Nitrogen Compounds	24
		2.5.2 (a) Ammonia	24
		2.5.2 (b) Nitrite	24
		2.5.2 (c) Nitrate	25
		2.5.2 (d) Gaseous and Atmospheric	25
		Forms of Nitrogen	
	2.5.3	Nitrogen Cycle	26
	2.5.4	Nitrification	26
2.6	Trace I	Metals	27
	2.6.1	Industrial Wastewater	27
		2.6.1 (a) Mine Drainage	27
		2.6.1 (b) Coal Mine Drainage	28
		2.6.1 (c) Electroplating Industries	29
	2.6.2	Heavy Metals	29

2.6.3	Constructed Wetland as a Treatment		
	Method for Heavy Metals Wastewater		

CHAPTER 3: METHODOLOGY

3.1	Vegetation Species		
3.2	Chemicals		
3.3	Experimental Set-Up		
	3.3.1	Tank	33
	3.3.2	Hydraulic Circuit	34
	3.3.3	Pump and Aerator	35
	3.3.4	Soil	36
	3.3.5	Vegetation Configuration	36
	3.3.6	CWs System	37
3.4	Experi	mental Procedures	38
	3.4.1	Constructed Wetland Experiment	38
		3.4.1 (a) Blank Sample	39
		3.4.1 (b) Sample with Potassium Chromate	39
		(K ₂ CrO ₄)	
		3.4.1 (c) Sample with Potassium Chromate	39
		(K_2CrO_4) and aeration	
	3.4.2	Sampling	39
3.5	Analyti	ical Method	40
	3.5.1	pH and Temperature	40
	3.5.2	Dissolve Oxygen (DO)	41
	3.5.3	Conductivity	41
	3.5.4	Chemical Oxygen Demand (COD)	42
	3.5.5	Ammonium Ion	43
	3.5.6	Chromium Ion	43

CHAPTER 4: RESULTS AND DICUSSIONS

4.1	The Effect of pH and Temperature	45
4.2	The Effect of Conductivity	46
4.3	The Effect of Dissolved Oxygen (DO) and Chemical	48
	Oxygen Demand (COD)	
4.4	Ammonium Ion	49
4.5	Heavy Metal Removal	51

CHAPTER 5: CONCLUSIONS AND RECOMMENDATIONS

5.1	Conclusions	52
5.2	Recommendations	53

54

REFERENCES

vi

ABSTRACT

Heavy metals, such as lead, nickel, zinc, cadmium, mercury, and copper are a potentially toxic component of many wastewater effluents. Nowadays, constructed wetland (CWs) has become an alternative method in term of cost saving and low maintenance to remove this Therefore, the aim of this study were to determine the heavy metal in wastewater. effectiveness of constructed wetland in treating heavy metal wastewater treatment with determining the parameters of heavy metal wastewater such as pH, dissolved oxygen, conductivity. COD as well as heavy metal ions of the selected wetland species. Besides that, this study also aimed to determine the feasibility of the *lpomoea aquatica* as the vegetation species applied in constructed wetland for heavy metal wastewater treatment and to study the effect of aeration in Surface flow system (SF) of constructed wetland. In this study, the artificial pollutant used was potassium chromate (K_2CrO_4) and three laboratory-scales of SF units were developed and evaluated. The first unit was blank (without pollutant) and another two were fed with K_2CrO_4 with the concentration of 0.0476 g/L. In contrast with Unit 2, Unit 3 was installed with an aerator in order to study the effect of aeration on heavy metal removal. All the units were run outdoor and continuously for five consecutive days where the influents were circulated throughout the experiment. The parameters studied were pH, temperature, conductivity, Dissolved oxygen (DO), Chemical oxygen demand (COD), chromium ion and ammonium ion. After five days of experiment, Unit 3 showed the highest value of COD removal was 16.43% with chromium and ammonium ions concentrations were 2.125 ppm and 2.03 mg/L, respectively. Meanwhile, the conductivity value was 335 µS/cm with pH was 8.41 and DO was 8.82 mg/L. From this study, it can be summarized that *lpomoea aquatic* in SF of CWs had a small potential in COD and heavy metal removals from wastewater. Therefore, it demonstrated that this kind of vegetation species exhibited very low uptake efficiency of the contaminants from the water system. It also demonstrated that the COD was successfully removed even in a small quantity. It was resulted from the aeration effect been introduced which promoted a high oxygen transfer rate and also probably due to easily-oxidized organic matter by the supplied oxygen