UNIVERSITI TEKNOLOGI MARA CAWANGAN PULAU PINANG

DATA AUGMENTATION BY USING IMAGE PROCESSING TECHNIQUE FOR LOW LIGHT CHARACTERISTICS WATER OF INTELLIGENCE UNDERWATER VISION SYSTEM

SITI NUR MARDHIAH BINTI HAMZAH

BACHELOR OF ENGINEERING (HONS) ELECTRICAL AND ELECTRONIC ENGINEERING

July 2020

AUTHOR'S DECLARATION

I declare that the work in this thesis was carried out in accordance with the regulations of Universiti Teknologi MARA. It is original and is the results of my own work, unless otherwise indicated or acknowledged as referenced work.

I, hereby, acknowledge that I have been supplied with the Academic Rules and Regulations, Universiti Teknologi MARA, regulating the conduct of my study and research.

Name of Student	:	Siti Nur Mardhiah Binti Hamzah
Student I.D. No.	:	2017668704
Programme	:	Bachelor of Engineering (Hons.) Electrical and
		Electronic Engineering- EE200
Faculty	:	Faculty of Electrical Engineering
Thesis	: Data Augmentation by Using Image Processing	
		Technique For Low Light Characteristics Water Of
		Intelligence Underwater Vision System
		June
Signature of Student	:	
Date	:	July 2020

ABSTRACT

Data augmentation is used to significantly increase the number of available datasets for training models in Convolutional Neural Network or CNN. CNN required a lot of datasets in order for training and testing the models to acquire better accuracy of overall project. However, an available dataset for underwater images are vast and unmatched with low light characteristics due to cloudy water in pond environment. Therefore, this paper proposed the data augmentation by using image processing techniques for low light characteristics water of intelligence underwater vision system. The objective of this study is to develop an augmented underwater dataset by using various image processing techniques and to evaluate the effect of image augmentation on underwater images in the CNN performance. The data augmentations are using Gaussian Noise and Grayscale Conversion for augmenting the original datasets. Histogram Equalization is used to enhance the shrimp and underwater images as part of the image processing technique applied. Lastly, the CNN model is trained and validated using both before and after augmented datasets to compare the performance in terms of the percentage and the losses. The results show that after augmentation reached 99.3% for training and 99.1% for validation accuracy. In conclusion, this study has shown that by performing data augmentation, it is able to boost the number of datasets for training and testing the CNN model and also enhancing the accuracy of the trained models.

ACKNOWLEDGEMENT

First and foremost, I would like to thank Allah S.W.T. for giving me the time, strength and blessing to finish this study. Without His blessings, none of this is possible. Special appreciation goes to my parent for their love, understanding and unconditional support throughout this long and tough journey.

I would like to express my special gratitude and thanks to my supervisor, Ir Dr Iza Sazanita Isa for her valuable advice, support, ideas and guidance throughout this study.

Special thanks to my colleagues and friends for helping me with this project. Finally, this thesis is dedicated to my very dear father and mother for the vision and determination to educate me. This piece of victory is dedicated to both of you. Alhamdulilah.

TABLE OF CONTENTS

AUT	'HOR'S DECLARATION	i	
ABS'	TRACT	iii	
ACK	NOWLEDGEMENT	iii	
TAB	LE OF CONTENTS	iv	
LIST	COF TABLES	vii	
LIST	COF FIGURES	viii	
LIST	COF ABBREVIATIONS	X	
CHA	PTER 1 INTRODUCTION	1	
1.1	Overview	1	
1.2	Background of Study	1	
1.3	Problem Statement	3	
1.4	Objectives	4	
1.5	Scope of Study	4	
1.6	Relevent of The Study	5	
1.7	Thesis Organization	6	
1.8	Summary	7	
СНА	PTER 2 LITERATURE REVIEW	8	
2.1	Overview	8	
2.2	Shrimp Aquaculture		
2.3	Underwater Images		
2.4	Convolutional Neural Network	11	
	2.4.1 Application of CNN	11	
	2.4.2 CNN Structure	12	
	2.4.3 Convolutional Layer	13	
	2.4.4 Non Linear Layer	13	

	2.4.5	Pooling Layer	14
	2.4.6	Fully Connected Layer	14
2.5	Data A	Augmentation	16
	2.5.1	Adding Noise	16
	2.5.2	Image Conversion	17
	2.5.3	Image Enhancement	18
2.6	Summa	ary	19

CHAI	PTER 3	RESEARCH METHODOLOGY	20
3.1	Overv	iew	20
3.2	Overall Proposed Work		
3.3	Data Acquisition		
3.4	Image Augmentation		24
	3.4.1	Adding Noise	24
	3.4.2	Image Conversion	25
	3.4.3	Image Enhancement	26
3.5	Experi	mental Setup for Deep Learning Model	29
	3.5.1	Convolutional Neural Network Architecture	29
	3.5.2	Machine Specification	30

	3.5.3 Flowchart of CNN Programming	30
3.6	Training and Testing	33
3.7	Performance Evaluation	34
3.8	Summary	35

CHA	PTER 4	RESULTS AND DISCUSSION	36
4.1	Overv	iew	36
4.2	Result	s for Data Augmentation	36
	4.2.1	Data Augmentation with Gaussian Noise	36
	4.2.2	Data Augmentation with Grayscale Conversion	39
	4.2.3	Results for Histogram Equalization	42
4.3	CNN	Performance	44
4.4	Summ	nary	50

51
51
52
52
53
57