UNIVERSITI TEKNOLOGI MARA

1×N SYMMETRICAL AND ASYMMETRICAL OPTICAL PLANAR WAVEGUIDES COUPLERS

NOR SYAFIQAH MOHAMED KASSIM

Thesis submitted in fulfillment of the requirements for the degree of Master of Science

Faculty of Applied Sciences

October 2012

AUTHOR'S DECLARATION

I declare that the work in this thesis was carried out in accordance with the regulations of Universiti Teknologi MARA. It is original and is the result of my own work, unless otherwise indicated or acknowledged as referenced work. This thesis has not been submitted to any other academic institution or non-academic institution for any degree or qualification.

I, hereby, acknowledge that I have been supplied with the Academic Rules and Regulations for Post Graduate, Universiti Teknologi MARA, regulating the conduct of my study and research.

Name of Student	: Nor Syafiqah Mohamed Kassim
Student I.D. No.	: 2008533447
Programme	: Master of Science (Research)
Faculty	: Applied Sciences
Thesis Title	: 1×N Symmetrical and Asymmetrical Optical Planar Waveguides Couplers
Signature of Student	Enter .
Date	: October 2012

ABSTRACT

1×N symmetrical and asymmetrical couplers based-on highly multimode planar waveguide have been designed, simulated, fabricated and characterized. Highly multimode waveguide has wide potential application in home-network applications. automotive wiring such as entertainment devices in car and sensors application. In this research work, 1×2 and 1×4 symmetrical waveguide coupler were utilized symmetry Y-junction design to obtain symmetric splitting ratio. Meanwhile, 1×2 asymmetrical waveguide coupler were developed using different technique to obtain asymmetrical ratios. The transmission characteristics were simulated using nonsequential ray-tracing technique. The devices have cross-section area of 1 mm ×1 mm were fabricated on transparent acrylic substrates. Two different waveguides have been used as a core that is highly transparent adhesive polymer and hollow metal-based waveguide. The hollow waveguide structure was coated with 60-nm-thick reflective layer to enhance reflectivity in the waveguide channel. The design of 1×2 tap-off Yjunction waveguide coupler utilized changing the width of the branching waveguides to obtain asymmetric branching ratios. The simulation result gives excess loss from 0.223 dB to 0.528 dB with various tap-width of 0.05 mm to 0.95 mm with 0.05 mm interval. The output coupling ratios have been designed in the range of 1% to 99%. A novel design of asymmetric hollow shift-port Y-junction waveguide coupler was proposed. This Y-junction simply utilizes the technique of shifting the axis of the arm of the output port so that the required power-splitting ratio can be obtained. The waveguide splits the output power asymmetrically in the range of 93% to 7% with $\pm 3\%$ splitting-ratio accuracy. The measured insertion loss at the shift-port has a minimum value of 4.00 to a maximum of 15.62 dB for 0.00 to 0.90 mm shifting of the axis respectively. While the measured optical excess loss at the shift-port varies from 2.06 to 4.32 dB. Another new asymmetrical waveguide coupler design which is hollow shift-axis has been presented. The structure with a series of patterns having shifted axis (Δx) from 0.1 mm to 0.9 mm have been designed. The center axis of the taper waveguide and the branching output arm were adjusted in a straight line to obtain an asymmetrical branching ratio. By shifting Δx from 0.1 to 0.9 mm, the branching ratio can be obtained in the range from 1% to 99% by experiment. The measured insertion loss at the shift-axis has a minimum value of 5.21 dB to a maximum of 27.36 dB for 0.1 to 0.9 mm shifting of the axis respectively. While the measured optical excess loss at the shift-axis varies from 5.18 to 10.58 dB.

TABLE OF CONTENTS

AUTHOR'S DECLARATION	ii
ABSTRACT	iii
ACKNOWLEDGEMENT	iv
TABLE OF CONTENTS	v
LIST OF TABLES	vii
LIST OF FIGURES	ix
LIST OF SYMBOLS	xv

CHAPTER ONE: INTRODUCTION

1.1	Research Background	1
1.2	Problem Statement	3
1.3	Research Objectives	3
1.4	Significance of Study	3
1.5	Scope of Research Work	4
1.6	Content of Thesis	4

CHAPTER TWO: THEORY OF OPTICAL WAVEGUIDE

2.1	Introd	action		
2.2	Optica	d Wavegu	uide	5
	2.2.1	Introduc	ction	5
	2.2.2	Electron	6	
	2.2.3	Geometry of Waveguides		
	2.2.4	Polymer Waveguide		10
	2.2.5	Hollow Waveguide		11
	2.2.6	Rectangular Waveguides		13
2.3	Optical Fiber		15	
	2.3.1	Multim	ode Fiber	19
	2.3.2	Polyme	Polymer Optical Fiber (POF)	
		2.3.2.1	Advantages	20
		2.3.3.2	Coupling Light Into Multimode Planar	20
			Waveguides	

2.4	Multir	node Optical Couplers	22
	2.4.1	1×2 Symmetry Coupler	23
	2.4.2	1×2 Asymmetry Coupler	26
СНА	PTER	THREE: METHODOLOGY	
3.1	Introd	uction	30
3.2	Couple	ers Fabrication	31
	3.2.1	Polymer Y-Junction Coupler	35
	3.2.2	Hollow Metal-Based Y-Junction Coupler	38
3.3	Experi	imental Set Up of Y-junction Waveguide Coupler	40
3.4	Non-S	equential Ray Tracing	41
3.5	Flow (Chart	43
	3.5.1	Presentation Flow of Experimental Results and Discussion	45
СНА	PTER	FOUR: 1×N SYMMETRICAL WAVEGUIDE COUPLERS	
4.1	Introd	uction	46
4.2	1×2 S	ymmetrical Waveguide Coupler	46
	4.2.1	1×2 Polymer Y-Junction Coupler	48
		4.2.1.1 Simulation and Experiment of 1×2 Polymer	49
		Y-Junction Coupler	
		4.2.1.2 Results and Discussion of 1×2 Polymer Y-Junction	51
		Coupler	
	4.2.2	V-shaped Tip Y-junction Waveguide Coupler	58
		4.2.2.1 Simulation of V-shaped Tip Waveguide Coupler	59
		4.2.2.2 Results and Discussion of V-shaped Tip	61
		Y-junction Waveguide Coupler	
	4.2.3	1×2 Hollow Metal-Based Y-Junction Coupler	63
		4.2.3.1 Simulation and Experiment of 1×2 Symmetrical	64
		Hollow Metal-Based Y-Junction Coupler	
		4.2.3.2 Results and Discussion of 1×2 Symmetrical Hollow	v 64
		Metal-Based Y-Junction Coupler	
	4.2.4	Summary of 1×2 Symmetrical Waveguide Coupler	70
4.3	1×4 S	ymmetrical Waveguide Coupler	70
	4.3.1	1×4 Polymer Y-Junction Coupler	73