UNIVERSITI TEKNOLOGI MARA CAWANGAN PULAU PINANG

SMART AGRICULTURE SYSTEM WITH INTERNET OF THINGS USING RASPBERRY PI

MUHAMMAD AZRI ASYRAF BIN MOHD HAFEZ

BACHELOR OF ENGINEERING (HONS) ELECTRICAL AND ELECTRONIC ENGINEERING

July 2020

AUTHOR'S DECLARATION

I declare that the work in this thesis was carried out in accordance with the regulations of Universiti Teknologi MARA. It is original and is the results of my own work, unless otherwise indicated or acknowledged as referenced work.

I, hereby, acknowledge that I have been supplied with the Academic Rules and Regulations, Universiti Teknologi MARA, regulating the conduct of my study and research.

Name of Student	:	Muhammad Azri Asyraf Bin Mohd Hafez
Student I.D. No.	:	2017668612
Programme	:	Bachelor of Engineering (HONS) Electrical and
		Electronic Engineering – EE200
Faculty	:	Faculty of Electrical Engineering
Thesis	:	Smart Agriculture System with Internet of Things
		using Raspberry Pi
		AST
Signature of Student	:	/ tri
Date	:	July 2020

ABSTRACT

The term used for networking of objects, equipment, vehicles, and other electronics device into the network for information exchange purpose is called Internet of Things (IoT). Nowadays, IoT is widely used for connecting device and collecting data information. Therefore, the use of IoT is very relevant for agriculture. The project is about smart agriculture system that is implemented with IoT. The system is combined with irrigation system in order to cope with the unpredictable weather in Malaysia. Raspberry Pi 4 Model B is used as the microcontroller of this system. DHT22 and soil moisture sensor is used to detect the temperature and humidity in surrounding and moisture level of the soil respectively where the output will be displayed on smartphone and computer. So, Smart Agriculture Systems with Internet of Things using Raspberry Pi brings a tremendous impact on the farmer's working method. Plus, it will also bring a positive effect on the crop production in Malaysia. Where about 66.67% water saving rate in a month and 24.44% water savings rate in a year can be achieved when using IoT-based irrigation systems compared to traditional irrigation systems. This would save the expenditure for hiring workers and avoid water wastage in daily needs. Smart Agriculture using IoT with Raspberry pi also show the data or the value of DHT22 and soil moisture level on the Ubidots Dashboard to monitor or observe the real time sensor reading and Ubidots server as data storage while providing data for Raspberry Pi control water pump for water pump on or off.

ACKNOWLEDGEMENT

Firstly, I wish to thank God for giving me the opportunity to embark on my Degree and for completing this long and challenging journey successfully. My gratitude and thanks go to my supervisor Dr. Zuraida Muhammad.

My appreciation goes to the UiTM provided the facilities and assistance. Special thanks to my colleagues and friends for helping me with this project.

Finally, this thesis is dedicated to the loving memory of my very dear father and mother for the vision and determination to educate me. This piece of victory is dedicated to both of you. Alhamdulilah.

TABLE OF CONTENTS

AUT	HOR'S	DECLARATION	i	
ABS	ГRACT		ii	
ACK	NOWL	EDGEMENT	iii	
TAB	LE OF	CONTENTS	iv	
LIST	OF TA	ABLES	vi	
LIST	OF FIC	GURES	vii	
LIST	OF AP	PPENDICES	viii	
LIST	OF SY	MBOLS	ix	
LIST	C OF AB	BBREVIATIONS	X	
CHA	PTER 1	1 INTRODUCTION	1	
1.1	Overv	view of study	1	
1.2	Proble	em statement	4	
1.3	Resear	5		
1.4	Resear	5		
1.5	Thesis	s Organization	6	
СНА	PTER 2	2 LITERATURE REVIEW	7	
2.1	Previo	7		
	2.1.1	Agriculture Monitoring	7	
	2.1.2	Communication Technology	8	
	2.1.3	Internet of Things (IoT)	10	
	2.1.4	Microcontroller/Microcomputer	13	
СНА	PTER 3	3 METHODOLOGY	18	
3.1	Overall design flow			
3.2	Flowchart system operation			
3.3	Circui	it diagram	23	
	3.3.1	Raspberry Pi 4 Model B	24	

	3.3.2	Digital output relative humidity and temperature (DHT22)	26
	3.3.3	Soil moisture sensor	27
	3.3.4	Analog to digital converter (ADS1115)	29
CHA	PTER 4	4 RESULT	30
4.1	Result	t	30
4.2	Specif	fication of water Volume Vs Soil Moisture Level	32
4.3	Exper	iment of Soil Moisture Level	33
	4.3.1	Automatic irrigation system	34
	4.3.2	Manual irrigation system	35
СНА	APTER 5	5 CONCLUSION	39
REF	ERENC	ČES	40
APP	ENDIC	ES	43