UNIVERSITI TEKNOLOGI MARA CAWANGAN PULAU PINANG

STUDY ON THE EFFECT OF SHORT GATE LENGTH ON 65NM NMOS TRANSISTOR USING SILVACO TCAD

AZIRA BINTI AHMAD TARMIZI

BACHELOR OF ENGINEERING (HONS) ELECTRICAL AND ELECTRONIC ENGINEERING

July 2020

AUTHOR'S DECLARATION

I declare that the work in this thesis was carried out in accordance with the regulations of Universiti Teknologi MARA. It is original and is the results of my own work, unless otherwise indicated or acknowledged as referenced work.

I, hereby, acknowledge that I have been supplied with the Academic Rules and Regulations, Universiti Teknologi MARA, regulating the conduct of my study and research.

Name of Student	:	Azira binti Ahmad Tarmizi
Student I.D. No.	:	2016263848
Programme	:	Bachelor of Engineering (Hons) Electrical & Electronic
		Engineering – EE200
Faculty	:	Faculty of Electrical Engineering
Thesis	:	Study on The Effect of Short Gate Length of 65nm
		NMOS Transistor Using SILVACO TCAD
Signature of Student	:	
Date	:	July 2020

ABSTRACT

The aim of this work is to design and study on the effect of short gate length of 65nm NMOS transistor using SILVACO TCAD. A 65nm NMOS was designed and fabricated to study its electrical characteristics. To simulate the electrical performances of the 65nm NMOS, ATHENA and ATLAS of SILVACO TCAD tools were used. Downscaling of NMOS transistors will change its operational characteristics. A shorter gate length will lead to Short Channel Effect (SCE) to arise which are channel length modulation and Drain Induced Barrier Lowering (DIBL). The Short Channel Effect can be observed from the comparison of the simulation result of the long gate length (0.3) μ m) and short gate length (65nm). Based on the result, SCE which are channel length modulation and DIBL can be observed from the short gate length (65nm) NMOS transistor. The results showed that inclusion of Halo implantation has reduced the DIBL effect as the I_D plot showed that when $I_D=0$ and $V_{TH}=1.87V$. In addition, retrograde well doping reduced the channel length modulation since I_D increase by a factor of 1.3 which is lower compared to I_D for 65nm conventional NMOS increase by a factor of 1.6. Lastly, the Halo implantation and retrograde well have been proven to reduce the channel length modulation as well as DIBL effect shown by the findings and supported by other studies.

ACKNOWLEDGEMENT

Upon the completion of my project which would not have been possible without the guidance and support from certain people. I really appreciate all the contribution in both aspects mentally and physically.

First and foremost, I would like to thank God Almighty for giving me strength and patience to finish this work.

I also wish to acknowledge the support and guidance given by my supervisor, Dr. Alhan Farhanah binti Abd Rahim. All the advices and directions have been the most important factors that push me to successfully complete this project.

Finally, I should not forget to thank all my friends that have been indirectly support both mentally and technically. Their love and encouragement are the comfort I needed to ease the pressure and tension.

TABLE OF CONTENTS

AUT	HOR'S DEC	CLARATION	i	
ABS	ГКАСТ		ii	
ACK	NOWLED	GEMENT	iii	
TAB	LE OF CON	ITENTS	iv	
LIST	OF TABLE	ES	vi	
LIST	OF FIGUR	ES	vii	
LIST	OF APPEN	NDICES	ix	
LIST	OF SYMB	OLS	X	
LIST	OF ABBRI	EVIATIONS	xi	
CHA	PTER 1 INT	FRODUCTION	1	
1.1	Research E	Background	1	
1.2	Problem St	tatement	2	
1.3	Significance of Study			
1.4	Objectives			
1.5	Scope Of V	Work	3	
	1.5.1 Ath	nena simulator	4	
	1.5.2 Atl	as simulator	4	
1.6	Limitation		5	
1.7	Thesis Org	anization	5	
СНА	PTER 2 LIT	TERATURE REVIEW	7	
2.1	Introductio	on	7	
	2.1.1 Intr	roduction of MOSFET	7	
	2.1.2 NM	IOS Basic Operation	13	
	2.1.3 Eff	ect of Short Gate Length	14	
	2.1.4 Pro	cess Improvements to Reduce Short Channel Effects	17	

CHA	PTER 3 RESEARCH METHODOLOGY	22			
3.1	Introduction	22			
3.2	Overall Project	23			
3.3	Designing Long Gate Length (0.3µm) And Short Gate Length (65nm) Of				
	NMOS Transistor	24			
3.4	Designing 65nm NMOS Transistor With Halo Implantation And Retrograde				
	Well	35			
3.5	Summary	37			
CHA	PTER 4 RESULTS AND DISCUSSION	39			
4.1	Introduction	39			
4.2	Extracted Parameters	39			
4.3	Current-Voltage (I-V)	40			
4.4	Summary	47			
CHA	PTER 5 CONCLUSION AND FUTURE WORK	48			
5.1	Conclusion	48			
5.2	Future Work	48			
REFERENCES		50			
APPENDICES		54			