UNIVERSITI TEKNOLOGI MARA

DISTRIBUTED SINGLE MODE FIBER SENSOR AND FIBER BRAGG GRATING FOR DISPLACEMENT AND TEMPERATURE SENSING

NOR JANNAH MUHAMAD SATAR

Thesis submitted in fulfillment of the requirements for the degree of Master of Science

Faculty of Applied Science

October 2012

AUTHOR'S DECLARATION

I declare that the work in this thesis was carried out in accordance with the regulations of Universiti Teknologi MARA. It is original and is the result of my own work, unless otherwise indicated or acknowledged as referenced work. This thesis has not been submitted to any other academic institution or non-academic institution for any other degree or qualification.

I, hereby, acknowledge that I have been supplied with the Academic Rules and Regulations for Post Graduate, Universiti Teknologi Mara, regulating the conduct of my study and research.

Name of student	:	Nor Jannah Binti Muhamad Satar
Student ID	:	2008708245
Programme	:	Master of Science
Faculty	:	Faculty of Applied Sciences
Thesis title	:	Distributed Single Mode Fiber Sensor and Fiber Bragg Grating for Displacement and Temperature Sensing
Signature of Student	:	- Ent
Date	:	October 2012

ABSTRACT

This dissertation discuss the research works on distributed optical fiber sensor system consisting of optical fiber-loop sensor incorporating fiber Bragg grating (FBG) for displacement and temperature detections. The fiber-loop sensor was designed using single mode fiber (SMF) to exhibit signal attenuation due to the macrobending perturbation in the optical fiber. A novel fiber-loop design was used to investigate the optical attenuation due to macrobending effect in the fiber-loop. The bending effect would cause higher optical signal loss when the fiber-loop diameter is further reduced due to the force action of displacement. The single mode fiber sensor (SMF-sensor) was characterized using optical time domain reflectometer (OTDR), optical spectrum analyzer (OSA), and optical power meter (OPM and OFM). Single SMF-sensor was characterized and the result was used in developing a distributed sensing system consists of three SMF-sensors along the monitoring line. The SMF-sensor is canable to detect faults simultaneously at several different locations. The fiber-loop sensinghead has a sensitivity of 0.044 dB/mm and 0.024 dB/mm measured using OTDR and OSA respectively. OTDR provides higher sensitivity in detecting displacement per millimeter unit besides precisely locate the fault point. The SMF-sensor was installed on lab-scale hill-slope simulator to test the response of the optical signal when the slope structure was displaced at different directions. SMF-sensor gives higher responsive when detecting displacement in horizontal-direction with a recorded sensitivity of 0.175 dB/mm and able to detect ground displacement initially at 5±0.1 mm displacement, FBG incorporated in the system served as temperature sensor, FBG recorded a sensitivity of 0.01 nm/°C when detected temperature changes.

TABLE OF CONTENTS

Page

AUTHOR'S DECLARATION	ii
ABSTRACT	iii
ACKNOWLEDGEMENT	iv
TABLE OF CONTENTS	v
LIST OF TABLES	ix
LIST OF FIGURES	x
LIST OF ABBREVIATIONS	xv

CHAPTER ONE: INTRODUCTION

1.1	Background Study	1
1.2	Statement of the Problem	3
1.3	Objectives of the Research	4
1.4	Scope of the Research	4
1.5	Significance of the Research	5
1.6	Outline of the Thesis	5

CHAPTER TWO: LITERATURE REVIEW

2.1	Conventional sensor Technology		
2.2	Overview of Photonic Technology	8	
2.3	Introduction to Optical Fibers	9	
2.4	Mode Propagation in Optical Fiber	10	
2.5	Principle of Light Guiding in Optical Fiber	12	
	2.5.1 Refractive index profile	12	
	2.5.2 Propagation of light in optical fiber: Total internal reflection	13	

	2.5.3	Numerical aperture	14	
	2.5.4	Mode-field diameter	15	
2.6	Atten	uation in Optical Fiber	16	
2.7	Principle of Fiber Bragg Grating			
2.8	B Optical Fiber Sensor			
	2.8.1	Intensity modulated-based sensor	25	
	2.8.2	Wavelength modulated-based sensor	34	
2.9	Field	Applications of Optical Fiber Sensor in Structural Monitoring	36	
2.10) Adva	antages of Optical Fiber	37	
		R THREE: METHODOLOGY AND TTERIZATION OF OPTICAL COMPONENTS		
3.1	Introd	luction	39	
3.2	Optic	al tools for splicing optical fiber	39	
3.3	Optic	al connector	41	
3.4	Optic	al measuring equipment	41	
	3.4.1	Optical spectrum analyzer	41	
	3.4.2	Optical power meter	42	
	3.4.3	Specification and principle of optical time domain reflectometer	43	
3.5	Optic	al components	51	
	3.5.1	Specification of single mode fiber (SMF-28)	51	
	3.5.2	Characterization of optical components	53	
		3.5.2.1 Characterization of optical coupler	55	
		3.5.2.2 Characterization of optical isolator	56	
		3.5.2.3 Characterization of optical circulator	57	
		3.5.2.4 Characterization of fiber Bragg grating	58	
		3.5.2.5 Summary of characteristics of optical components	62	