UNIVERSITI TEKNOLOGI MARA

BIO-BASED CELLULOSIC COMPOSITES MADE FROM LOCAL CELLULOSIC FIBRES MIXED WITH KENAF

MOHD KHAIRI BIN MOHD YUSOH

Thesis submitted in fulfillment of the requirements for the degree of Master of Science

Faculty of Applied Sciences

September 2012

AUTHOR'S DECLARATION

I declare that the work in this thesis was carried out in accordance with the regulations of Universiti Teknologi MARA. It is original and is the result of my own work, unless otherwise indicated or acknowledged as referenced work. This thesis has not been submitted to any other academic institution or non-academic institution for any degree or qualification.

I, hereby, acknowledge that I have been supplied with the Academic Rules and Regulations for Post Graduate, Universiti Teknologi MARA, regulating the conduct of my study and research.

Name of Student	: Mohd Khairi bin Mohd Yusoh
Student I.D. No.	: 2005221546
Programme	: Master of Science
Faculty	: Applied Sciences
Thesis Title	: Bio-based Composites Made from Local Cellulosic Fibres Mixed with Kenaf
Signature of Student	funta
Date	: September 2012

ABSTRACT

The utilization of natural fibres such as kenaf into composites materials have been exploited globally especially for low-load-bearing applications. Bio-based cellulosic composites have advantages in terms of lower material cost and promote green technology in comparisons with composites from synthetic fibres which are relatively expensive and can contribute to environmental problems. In this research, bio-based composites were fabricated from several natural fibres and blends (100% and 50/50% blends), initially converted into non-woven and woven fabric structures. Four different natural cellulosic fibres were utilized including kenaf, pineapple leaf, banana stem and coir. The composites were fabricated using epoxy, polyester, polypropylene and polyethylene resins. These composites were then tested for tensile strength and flexural strength. The results showed that for non-woven composites, the 100% pineapples fiber with epoxy resin gave the highest tensile strength while 100% kenaf fibres with epoxy resin gave the highest flexural strength. For both tensile and flexural strength results, the non-woven composites consisting of 100% coir fibres gave the lowest results. As for the woven composites, the 100% kenaf fibres with epoxy gave the highest tensile strength while the 100% kenaf fibres with polyester resin gave the highest flexural strength. Composites fabricated with epoxy resin gave the best tensile strength and flexural strength properties regardless of the types of fibres and fabric structure.

TABLE OF CONTENTS

		Page				
AUTHOR'S DECLARATION						
ABSTRACT		iii				
ACKNOWLEDGEMENTS						
TABLE OF CONTENTS						
LIST OF TABLES						
LIST OF FIGURES						
CHAPTER	ONE: INTRODUCTION					
1.1 Backg	Background of the Study					
1.2 Proble	Problem Statement					
1.3 Resea	Research Objectives					
1.4 Scope	Scopes and Limitations of the Study					
CHAPTER '	TWO: LITERATURE REVIEW					
2.1 A Bri	A Brief Definition of Composite					
2.2 Bio-E	Bio-Based Composite 6					
2.3 Natur	Natural Cellulosic Fibres					
2.3.1	Pineapple Leaf	8				
2.3.2	Banana Stem	10				
2.3.3	Coir	10				
2.3.4	Kenaf	12				
2.4 Type	of Matrices	13				
2.4.1	Thermoplastic	14				
	2.4.1.1 Polypropylene	14				
	2.4.1.2 Polyethylene	15				
2.4.2	Thermoset	15				

		2.4.2.1 Polyester	15
		2.4.2.2 Epoxy	16
2.5	Types of Composites Fabrication		17
	2.5.1	Spray Lay-up	18
	2.5.2	Wet Lay-up or Hand Lay-up	18
	2.5.3	Vacuum Bagging	19
	2.5.4	Filament Winding	20
	2.5.5	Resin Transfer Moulding (RTM)	21
	2.5.6	Cure Monitoring	21
2.6	Previous Investigations		

CHAPTER THREE: MATERIALS AND METHODS

3.1	Mater	als		
3.2	Research Methods		29	
	3.2.1	Preparation of Fibres		32
		3.2.1.1	Preparation of Pineapple Leaf Fibres	32
		3.2.1.2	Preparation of Banana Fibres	33
		3.2.1.3	Preparation of Kenaf Fibres	35
		3.2.1.4	Preparation of Coir Fibres	36
		3.2.1.5	Preparation of Woven Samples	36
	3.2.2	Fabricat	ion of Composites	39
		3.2.2.1	Fabrication of Composites Using Thermoset Resin	40
		3.2.2.2	Fabrication of Composites Thermoplastic Resin	42
3.3	Testing of Composites		44	
	3.3.1	Tensile	Strength	44
	3.3.2	Flexura	Strength	45
3.4	Analysis of Variance (ANOVA)			46