UNIVERSITI TEKNOLOGI MARA

DYNAMIC AVAILABLE TRANSFER CAPABILITY CALCULATION USING RALSTON'S METHOD CONSIDERING GENERATION RESCHEDULING

STENDLEY ANAK BUSAN

Thesis submitted in fulfillment of the requirements for the degree of Master of Science

Faculty of Electrical Engineering

September 2012

AUTHOR'S DECLARATION

I declare that the work in this thesis was carried out in accordance with the regulations of Universiti Teknologi MARA. It is original work and is the result of my own work, unless otherwise indicated or acknowledged as referenced work. This thesis has not been submitted to any other academic institution or non-academic institution for any degree or qualification.

I, hereby, acknowledge that I have been supplied with the Academic Rules and Regulations for Post Graduate, Universiti Teknologi MARA, regulating the conduct of my study and research.

Name of Student	:	Stendley Anak Busan
Student I.D. No.	:	2008342887
Programme	:	Master of Science
Faculty	:	Faculty of Electrical Engineering
Thesis Title	:	Dynamic Available Transfer Capability Calculation
		Using Ralston's Method Considering Generation
		Rescheduling
Signature of Student	:	Carpently
Date	:	September 2012

ABSTRACT

The transition of a centralized monopoly towards a decentralized power system network creates a highly competitive electricity market in order to provide a safe. cheap, efficient and reliable electrical energy to consumers. In a decentralized power network system, the so-called available transfer capability (ATC) information plays an important role for a bidding process among market participants. The most challenging task in determining ATC is to compute it in a fast and accurate manner by taking into account different types of a system security. The first objective of the thesis is to propose a simple, fast and accurate approach based on the intersection point between the variations of system's constraint with respect to the increase of power transfer and the constraint's limit. Second objective is to propose an index namely as normalized participation factor for critical generator identification prior to undertaking a rescheduling procedure to any occurrence of small-signal instability during the transaction. The thesis also includes a detailed explanation on small-signal stability with the intention to facilitate the readers' understanding on power system dynamic as well as to clearly explain the ambiguous explanation on most of the power system books. The proposed techniques were performed on the 39-bus New England and 2737-bus Polish systems. The performance and effectiveness of the proposed techniques were evaluated through the comparison with recursive AC power flow solution and weighted-average sensitivity index, respectively. The results have shown that the proposed techniques are fast, accurate, reliable and robust in determining the maximum secure value of dynamic ATC.

TABLE OF CONTENTS

AUT	HOR'S DECLARATION	ii
ABS	TRACT	iii
ACK	NOWLEDGEMENTS	iv
TAB	LE OF CONTENTS	v
LIST	f OF TABLES	viii
LIST	f OF FIGURES	ix
LIST	F OF NOMENCLATURES	xi
CHA	APTER ONE: INTRODUCTION	
1.1	Background and Significance of Research	1
1.2	Review of Related Work	3
1.3	Problem Statement	6
1.4	Objectives	7
1.5	Scope of Work	7
1.6	Organization of Thesis	9
CHA	PTER TWO: LITERATURE REVIEW	
2.1	Introduction	11
2.2	Available Transfer Capability Definition	11
2.3	Available Transfer Capability Computation Methods	13
	2.3.1 Static Available Transfer Capability Computation	
	Techniques	13
	2.3.2 Dynamic Available Transfer Capability Computation	
	Techniques	18
2.4	Power System Oscillation Problems and Its Mitigation	
	Techniques	25
2.5	Summary	28
CHA	APTER THREE: METHODOLOGY	
3.1	Introduction	29
3.2	Overall Research Methodology	29

3.3	Available Transfer Capability Considering Steady-state and Transient				
	Stabili	ty Constraints	31		
	3.3.1	Formulation of Ralston's Method	32		
	3.3.2	Cubic-spline Interpolation Technique	35		
	3.3.3	Determination of P-V, P-S and P- $\Delta\delta$ Curves using Cubic- spline			
		Interpolation Technique	37		
	3.3.4 Transient Stability Limit				
	3.3.5	Procedure of ATC Evaluation using Ralston's Method			
		incorporating Cubic-spline Interpolation Technique			
3.4	Rescheduling of Critical Generator Output for Small-signal Stability				
	Improvement due to the N-1 Contingency during Power Transfer				
	3.4.1	Power System Components Modelling	44		
		3.4.1.1 Generator Model	45		
		3.4.1.2 Exciter Model	52		
		3.4.1.3 Load Model	53		
		3.4.1.4 Network Model	54		
	3.4.2	Detailed Formulation of Components Model	56		
		3.4.2.1 Linearization of Generator and Exciter Model	56		
		3.4.2.2 Linearization of Network Model	57		
		3.4.2.3 Linearization of System Equations	58		
	3.4.3	Contingency Ranking Analysis	61		
	3.4.4	Rescheduling the Operation of Critical Generator to improve			
		Small-signal Stability caused by N-1 Contingency	63		
		3.4.4.1 Normalized Participation Factor	64		
		3.4.4.2 Procedures of Rescheduling Critical Generator	66		
3.5	Summ	ary	69		
CHAI	PTER I	FOUR: RESULTS AND DISCUSSIONS			
4.1	Introd	uction	70		
4.2	Test System				
	4.2.1	39 Bus New England System	71		
	4.2.2	2737 Bus Polish System	71		
4.3	Determination of Available Transfer Capability using Ralston's				
	Method				

vi