UNIVERSITI TEKNOLOGI MARA

ADVERSE EFFECTS OF NICOTINE ON DECIDUALIZATION, PREGNANCY AND PARTURITION

SITI NORASHIKIN BINTI MOHD TAMBEH

Thesis is submitted in fulfillment of the requirements for the degree of Master of Science

Faculty of Medicine

March 2015

AUTHOR'S DECLARATION

I declare that the work in this thesis was carried out in accordance with the regulations of Universiti Teknologi MARA. It is original and is the result of my own work, unless otherwise indicated or acknowledged as referenced work. This thesis has not been submitted to any other academic institutions or non-academic institution for any other degree of qualification.

I, hereby, acknowledge that I have been supplied with the Academic Rules and Regulations for Post Graduate, Universiti Teknologi MARA, regulating the conduct of my study and research.

Name of student

: Siti Norashikin Mohd Tambeh

Student ID No.

: 2009932371

Programme

: Master of Science (MD 780)

Faculty

: Faculty of Medicine

Title

: Adverse Effects of Nicotine on Decidualization,

Pregnancy and Parturition,

Signature of Student

·----

Date

: March 2015

ABSTRACT

Nicotine was shown to adversely affect female reproduction, however the mechanism of nicotine action remains unclear. One of the possibility is the altered reproductive endocrine profile. This study was designed to investigate the effects of nicotine on several female reproductive processes and the corresponding endocrine profile. Different nicotine dose administration and treatment duration on estrous cycle decidualization and pregnancy outcome were carried out. Nicotine tartrate 7.5 mg/kg/day administered sc for five days following unilateral ovariectomy was shown to prolong the estrous cycle duration (p<0.001) with no change seen in the number of ova flushed and no alteration in endocrine profile was demonstrated. Administration of 5.0 mg/kg/day nicotine tartrate failed to demonstrate attenuation in decidualization. however nicotine tartrate 7.5 mg/kg/day was found to increase the adrenal glands weight following treatment for nine days (p<0.01) in pseudopregnant rats. The degree of decidualization in animals receiving 7.5 mg/kg/day nicotine tartrate was significantly attenuated in all the treatment schedules and was more pronounced in animals receiving longer nicotine treatment (p<0.001). The level of plasma estrogen was significantly higher (p<0.05) and the plasma progesterone was significantly lower (p<0.001) in animals receiving longer nicotine treatment. Exogenous progesterone administration (2mg/day) failed to completely reverse the deleterious effect of nicotine on decidualization. In pregnant rats, administration of nicotine tartrate 7.5 mg/kg/day for nine days significantly increased the number of fetal loss by 2.86 times on day 16 of pregnancy compared with control. The weight of the feto-placental unit was also significantly reduced (p<0.001). The estrogen level was significantly higher (p<0.01) and progesterone was significantly lower (p<0.05) on day 16 of pregnancy when compared with control. During parturition, there was an increase in fetal loss when compared with the blastocyst implantation sites on day 10 of pregnancy. This was seen when nicotine was given for nine days (p<0.001) or from day 5 through day 9 of pregnancy (p<0.001). The birth weight of the pups was also significantly reduced in nicotine-treated groups however the weight was normalized after a few days. The persistent endocrine profile seen with an increase in estrogen and a decrease in progesterone may play a role in derangement of the reproductive process following nicotine administration. However, administration of exogenous progesterone failed to completely reverse this derangement point to other possibilities of reproductive dysfunction apart from sex hormones profile. In conclusion, nicotine-induced reproductive dysfunction is possibly mediated through multiple mechanisms.

TABLE OF CONTENTS

	Page
AUTHOR'S DECLARATION	ii
ABSTRACT	iii
ACKNOWLEDGEMENTS	iv
TABLE OF CONTENTS	v
LIST OF TABLES	ix
LIST OF FIGURES	xiii
LIST OF PLATES	xv
LIST OF ABBREVIATION	xvi
CHAPTER ONE: INTRODUCTION	1
1.1 General Background	1
1.2 Problem Statement	3
1.3 Objectives	3
1.4 Significance of Study	4
CHAPTER TWO: LITERATURE REVIEW	5
2.1 Female Reproduction	5
2.1.1 Introduction	5
2.1.2 Role of the hypothalamus	5
2.1.3 Role of the anterior pituitary	7
2.1.4 Role of the ovary	7
2.1.4.1 Hormones of the ovary	8
2.1.5 Role of the endometrium	11
2.1.6 Menstrual cycle and ovulation	12
2.1.7 Estrous cycle	15
2.1.8 Deciduoma formation	15
2.1.9 Pregnancy	18
2.2 Nicotine	19
2.2.1 General properties	19

2.2.2 Absorption and distribution	20
2.2.3 Metabolism and excretion	21
2.2.4 Effects of nicotine on health	23
CHAPTER THREE: MATERIALS AND METHODOLOGY	35
3.1 Experimental animals	35
3.2 Chemical preparation	35
3.2.1 Nicotine tartrate	35
3.2.2 Progesterone	36
3.2.3 Hyaluronidase	36
3.3 Experiment 1 – Estrous cycle and Ovulation	36
3.3.1 Experimental Groups	36
3.3.2 Animal manipulations	40
3.3.2.1 Vaginal smearing	40
3.3.2.2 General Anaesthesia	40
3.3.2.3 Unilateral ovariectomy	40
3.3.2.4 Collection of the ova via oviductal flushing	41
3.3.2.5 Nicotine administration	41
3.3.2.6 Blood collection	41
3.4 Experiment 2 – Deciduoma formation	42
3.4.1 Experimental groups	42
3.4.2 Animal manipulations	44
3.4.2.1 Vaginal smearing	44
3.4.2.2 Nicotine administration	44
3.4.2.3 General anaesthesia	44
3.4.2.4 Decidual cell induction	44
3.4.2.5 Blood and organ collection	45
3.5 Experiment 3 – Pregnancy and its outcome	45
3.5.1 Experimental groups	45
3.5.2 Animal manipulations	49
3.5.2.1 Vaginal smearing	49
3.5.2.2 Nicotine administration	49
3.5.2.3 General anaesthesia	49