UNIVERSITI TEKNOLOGI MARA

EFFECT OF INCREASING Na₂O ON STRUCTURAL, ELASTIC AND OPTICAL PROPERTIES OF (90-x)GeO₂-xNa₂O-10PbO GLASS SYSTEM IN THE GERMANATE ANOMALY REGION

CHE NORAIDA BINTI MOHD ZAINUDIN

Thesis submitted in fulfillment of the requirements for the degree of Master of Science

Faculty of Applied Sciences

AUTHOR'S DECLARATION

I declare that the work in this thesis was carried out in accordance with the regulation of Universiti Teknologi MARA. It is original and is the results of my own work, unless otherwise indicated or acknowledge as referenced work. This thesis has not been submitted to any other academic institution or non-academic institution for any degree or qualification.

I, hereby, acknowledge that I have been supplied with the Academic Rules and Regulations for Post Graduate, Universiti Teknologi MARA, regulation the conduct of my study and research.

Name of Student : Che Noraida Binti Mohd Zainudin

Student I.D No. : 2012877268

Programme : Master of Science

Faculty : Faculty of Applied Sciences

Thesis Title : Effect of Increasing Na2O on Structural, Elastic and

Optical Properties of (90-x)GeO2-xNa2O-10PbO Glass

System in the Germanate Anomaly Region

Date : July 2016

ABSTRACT

Ternary germanate glasses with the chemical formula $(90-x)GeO_2-xNa_2O-10PbO$ (x = 10, 15, 20, 10) 25, 30 mol %) have been prepared by melt-quenching method. XRD patterns showed the amorphous nature of the glass samples for $x \le 20$ mol % and emergence of minor crystalline peaks in a mainly amorphous matrix for x > 20 mol %. Density, ρ increased with Na₂O content up to 20 mol % before decreasing beyond 20 mol % while molar volume, V_a showed an opposite trend to the density, with a minima at 20 mol % of Na₂O content indicating the presence of the germanate anomaly below 20 mol %. Ultrasonic velocity measurements showed both longitudinal, v_l and shear, v_s velocities increase up to 20 mol % before decreasing with further addition of Na₂O. Independent longitudinal, L and shear, G moduli along with Young's modulus, Y, mean sound velocity, v_m , Debye temperature, Θ_D , and hardness, H also recorded maxima at 20 mol % of Na2O content. The initial increase in L and G up to 20 mol % of Na2O content was suggested to be related to structural modification occurring due to the conversion of sixmembered GeO4 rings to three-membered ring of GeO4 which changed the bond density and compactness of the glass systems. The increased in elastic moduli also indicates that the structural change was accompanied by an increase in rigidity and stiffness of the glass. Beyond 20 mol % of Na₂O, the decreased L and G could be due to depolymerization of the glass network. Further analysis using bulk compression and ring deformation models also showed the ratio of ideal bulk modulus to the experimental bulk modulus, K_{bc}/K_e increased from 10 to 20 mol % addition of Na₂O accompanied by reduction in average atomic ring size, l in the germanate anomaly region. The minimum K_{hc}/K_e values was observed at x = 25 mol % which coincides with minima for l. The optical properties the glass system showed optical energy gap, E_{out} decreased with addition of Na₂O up to 20 mol % and increased beyond 20 mol %, while Urbach energy, E_U and refractive index, n showed opposite trends to E_{opt} . The changes in the optical behaviors are suggested to be related to the changes in NBO concentration in the glass samples.

TABLE OF CONTENTS

			Page			
CON	ii					
CONFIRMATION BY PANEL OF EXAMINERS AUTHOR'S DECLARATION						
AUTHOR'S DECLARATION ABSTRACT						
	iv v					
ACKNOWLEDGEMENTS TABLE OF CONTENTS						
TABLE OF CONTENTS						
LIST OF TABLES						
LIST OF FIGURES						
LIST OF SYMBOLS						
LIST	OF AB	BBREVIATIONS	xvi			
СНА	PTER (ONE: INTRODUCTION				
1.1		ground	1			
1.2	Proble	em Statements of Study	4			
1.3	Objec	6				
1.4	Signif	7				
1.5	Scope and Limitation of Study					
CIT	PERD (TWO: LITERATURE REVIEW				
			8			
2.1	Glass		_			
	2.1.1	Formation of Glass	9			
	2.1.2	Oxide Glasses	11			
2.2		i Metal Oxide	12 12			
2.3	Germanate Glasses					
	2.3.1	Alkali Germanate Anomlay	14			
	2.3.2	Explanation of Germanate Anomaly	17			
	2.3.3	Binary Germanate Glasses	18			

	2.3.3.1 Na ₂ O-GeO ₂ glass system				18		
			19				
	2.3.4	Ternary C	ermanate Glasss		19		
2.4	Elastic		21				
	2.4.1		22				
	2.4.2	Bulk Com	pression Model		26		
	2.4.3	Ring Defo	rmation Model		28		
2.5	Optica	l Studies o	f Glass System		30		
	2.5.1	Optical Energy Gap, E_{opt}					
	2.5.2	Urbach E	nergy, E_U		31		
	2.5.3	Types of	Defects in the System		32		
	2.5.4	Refractive	Index, n		34		
CHAI	PTER 1	THREE: M	ATERIALS AND METHODOLOGY				
3.1	Mater	Materials					
	3.1.1	Chemical	3		35		
	3.1.2	Apparatu		36			
3.2	Flow 6	w Chart for Samples Preparations					
3.3	Descri	ription of Samples Preparations 38					
3.4	Chara	cterization		39			
	3.4.1 X-ray Di		fraction (XRD)		39		
		3.4.1.1	Basic Principle of XRD		39		
		3.4.1.2	Preparation of Samples for XRD		41		
		3.4.1.3	Analysis of XRD Data		41		
	3.4.2 Fourier Transform Infrared (FTIR) Spectroscopy			41			
		3.4.2.1	Basic Principle of FTIR		42		
		3.4.2.2	Preparation of Samples for FTIR		43		
		3.4.2.3	Analysis of FTIR Result		43		
	3.4.3		44				
		3.4.3.1	Basic principle of ultrasonic		44		
		3.4.3.2	Preparation of Samples		45		