UNIVERSITI TEKNOLOGI MARA

METABOLOMICS STUDY OF ASPIRIN-TREATED CARDIOVASCULAR DISEASE (CVD) PATIENTS ALONG WITH AN INVESTIGATION ON ASPIRIN RESISTANCE

ASBIYATULAIDA BINTI DERAHMAN

Thesis submitted in fulfillment of the requirements for the degree of Master of Science

Faculty of Pharmacy

June 2016

AUTHOR'S DECLARATION

I declare that the work in this thesis was carried out in accordance with the regulations of Universiti Teknologi MARA. It is original and is the results of my own work, unless otherwise indicated or acknowledged as referenced work. This thesis has not been submitted to any other academic institution or non-academic institution for any degree or qualification.

I, hereby, acknowledge that I have been supplied with the Academic Rules and Regulations for Post Graduate, Universiti Teknologi MARA, regulating the conduct of my study and research.

Name of Student	:	Asbiyatulaida binti Derahman
Student I.D. No.	:	2010334475
Programme	:	Master of Science - PH780
Faculty	:	Integrative Pharmacogenomics Institute (iPROMISE)
		and Faculty of Pharmacy
Thesis Title	ă.	Metabolomics Study of Aspirin-treated Cardiovascular
		Disease (CVD) Patients along with an Investigation on
		Aspirin Resistance
Signature of Student	:	Jan 3
Date	:	June 2016

ABSTRACT

Disease of the heart and blood vessels or cardiovascular disease (CVD) is the leading cause of death worldwide. Prescription of aspirin therapy for its antiplatelet effect has been well documented in the clinical use. However, a phenomenon called 'aspirin resistance' has been reported due to a failure of the aspirin therapeutic effect to protect patients from complications in CVD patients. Although resistance of aspirin has been well determined through the assessment of platelet function, nevertheless its mechanism remains poorly understood. The study of metabolomics in CVD is one of a great potential to assist in the prevention and treatment of the disease through an investigation of the biochemical processes which involves small molecular metabolites. Metabolomics approaches used in this study include profiling of metabolites, analysis of metabolic pathways and discovery of potential biomarkers. A total of ninety-five (95) extracted serum samples were analyzed using high-throughput liquid chromatography mass spectrometry quadrupole time-of-flight (LC/MS Q-TOF). In this study, analyses were performed separately for three (3) cohorts; (i) CVD patients vs. healthy controls; (ii) aspirin resistant vs. aspirin sensitive CVD patients and (iii) matched analysis of CVD patients vs. healthy controls. From the analysis, fatty acid metabolites were highly profiled in the study of the occurrence of CVD. Of interest metabolites such as 2E,5Z,8Z,11Z,14Z-eicosapentaenoic acid. dihydrosphingosine and purine were considered as the potential biomarker for CVD. These metabolites were found significantly up-regulated in patients. Meanwhile, in the determination of the association of aspirin resistance, metabolites of fatty acids and eicosanoids were among the most highly profiled compounds. Several metabolites were noted as the potential biomarkers of aspirin resistance including 5-Scysteinyldopamine, butyryl-L-carnitine, 1-methyladenosine, capryloylglycine and tryptophan. Lipid and amino acid metabolism were recognized as the related metabolic pathways involved in the occurrence of CVD in this study. Whereas, pathways such as amino acid metabolism, lipid metabolism, fatty acid metabolism and nucleotide metabolism were found in the analysis of aspirin resistance. Of these pathways, trypthophan and arachidonic acid metabolism were highly associated with the phenomenon of aspirin resistance. Overall, this metabolomics study provides significant metabolites perturbations and important metabolic pathways which are involved in the occurrence of CVDs and its association with aspirin resistance. Thus, this approach could be relevant to CVD disease-related studies and further assist in practice of personalized medicine. However, this preliminary research study requires further validations and investigations prior of application in clinical setting.

TABLE OF CONTENTS

Page

CONFIRMATION BY PANEL OF EXAMINERS	ii
AUTHOR'S DECLARATION	iii
ABSTRACT	iv
ACKNOWLEDGEMENT	v
TABLE OF CONTENTS	vi
LIST OF TABLES	ix
LIST OF FIGURES	xi
LIST OF ABBREVIATION/NOMENCLATURE	xiv

CHAPTER ONE: INTRODUCTION

1.1	Background of Study	1
1.2	Statement of Research Problems	3
1.3	Objectives of Study	4

CHAPTER TWO: LITERATURE REVIEW

2.1	Cardiovascular Disease (CVD)		5
	2.1.1	Types of Cardiovascular Disease (CVD)	6
	2.1.2	Risk Factors of Cardiovascular Disease (CVD)	7
2.2	Aspirin		
	2.2.1	Roles of Aspirin	9
	2.2.2	Metabolisms of Aspirin	10
	2.2.3	Mechanisms of Action of Aspirin	11
2.3	Aspirin Resistance		
	2.3.1	The Relationship between Aspirin Resistance and Platelet	16
		Aggregation	
2.4	Metabolomics		
	2.4.1	Metabolites	19

	2.4.2	Mass Spectrometry (MS)		20
		2.4.2.1	Liquid Chromatography Mass Spectrometry	21
			Quadrupole Time-of-Flight (LC/MS Q-TOF)	
	2.4.3	Metabo	lomics Analysis	23
		2.4.3.1	Profiling of Metabolites	24
		2.4.3.2	Analysis of Metabolic Pathways	24
		2.4.3.3	Discovery of Biomarkers	25
2.5	Metab	olomics	in CVD	25
			METHODOLOGY	

CHAPTER THREE: METHODOLOGY

3.1	Overv	view of the Study Design		
3.2	Appro	oval of Research Ethics		
3.3	Inform	rmation and Consent Forms		
3.4	Participants			
	3.4.1	Enrolment of Participants	30	
	3.4.2	Recruitment of Participants	31	
		3.4.2.1 Patients Group	31	
		3.4.2.2 Healthy Controls Group	31	
3.5	Chem	icals, Reagents and Instruments	32	
3.6	Samples			
	3.6.1	Preparation of Samples	33	
	3.6.2	Quality Control (QC) of Samples	34	
	3.6.3	Preparation of Samples for LC/MS Q-TOF Analysis	34	
3.7	LC/M	S Q-TOF	35	
	3.7.1	Preparation of Mobile Phase	36	
	3.7.2	Condition	36	
	3.7.3	Calibration and Tuning	37	
	3.7.4	Setup of Worklist	37	
3.8	Workflow of Metabolomics Analysis			
	3.8.1	Profiling of Metabolites	38	
	3.8.2	Analysis of Metabolic Pathway	39	
	3.8.3	Discovery of Biomarker	39	
3.9	Datab	ase of Metabolomics	39	