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ABSTRACT 

 

This paper presents the generation of force time history for coil spring 

fatigue life predictions using cumulative trapezoidal numerical integration of 

acceleration time histories. Loading time history was a crucial element for 

fatigue life prediction but a suitable instrument for the data collection was 

not always available. Hence, the required force time histories were generated 

from two relative acceleration time histories. Acceleration time histories 

from vehicle sprung and un-sprung mass were collected and converted into 

displacement using cumulative trapezoidal numerical integration approach. 

Through regarding the spring as a linear component, the force time history 

was obtained. The force time history together with the spring finite element 

model were used as the input to fatigue life models for fatigue life prediction. 

The predicted fatigue lives for the coil spring were 3.12× 10-6, 5.67 × 10-6, 

6.97 × 10-6 blocks to failure using Coffin-Manson, Morrow, Smith-Watson-

Topper model respectively. The results were validated using measured strain 

time history where the Morrow and Smith-Watson-Topper models’ results 

were fitted perfectly using the conservative correlation approach. 
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Introduction 
 

Fatigue failure analysis was a part of the automotive suspension design 

process which was invariably important. One of the many steps in automotive 

suspension design process was analysing the loads in the suspension [1]. To 

analyse those loads, the most comprehensive way was through applying a 

wheel force transducer. However, wheel force transducer was a commercial 

product where it was extremely costly and not affordable for most of the 

research purpose [2]. For a smaller scale and single component measurement, 

a strain gauge setup with data acquisition system were usually used to obtain 

the strain time histories for fatigue analysis. 

Due to the need of measurement of loading signals in fatigue life 

assessment, sample loadings for suspension, bracket and gear have been 

proposed by SAE, i.e. SAESUS, SUSBRAKT and SAETRN [3]. Savkin et 

al. [4] have utilised the SAE loadings to quantify the fatigue characteristic of 

a steel. These loadings were also used to predict fatigue life of a vehicle 

knuckle and compared with the results of a multibody simulation [5]. For a 

more realistic analysis, the service strain time histories of the automotive 

component were needed to be collected and it involved experiment setup 

efforts. Kong et al. [6] used several strain gauges to collect strain time 

histories and predicted the fatigue life of a leaf spring associated to different 

road profiles. The vehicle was applied with dummy loads to simulate vehicle 

fully loaded condition. 

During a strain measurement, a data acquisition system setup was 

needed. Even though the setup of strain measurement was not as complicated 

as wheel transducer, it required a few strain gauges which were disposed after 

used. Padzi et al. [7] associated the fatigue life of steel using integrated 

kurtosis-based algorithm for Z-filter which served as an alternative for 

fatigue strain analysis. Understanding the needs for signal generation, Putra 

et al. [8] proposed a conversion of acceleration to strain time histories using a 

mathematical suspension model. However, the construction of the 

mathematical model required lots of effort. Hence, it was significant to have 

a more direct and simple method of measurement which could be immediate 

used for suspension fatigue life prediction.    

Based on understanding of the overview of the case studies, this 

work proposed a generation method of force time history from two reference 

acceleration time histories for coil spring fatigue life assessment. Hence, the 

prediction of spring fatigue lives was achieved without strain measurement 

setup. This serves to reduce the experimental work that required for spring 

fatigue design. The acceleration signals were converted into relative 
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displacement and subsequently, force time history through a linear Hooke’s 

law. When nonlinear state of analysis, Ramberg-Osgood relationship was 

applied to convert the strain into stress. This analysis involved two 

accelerometers and a data acquisition where no mathematical model was 

required for force conversion.  

 

Methodology  
 
The method of this analysis could be divided into four steps which were real-

time road data collection, acceleration-displacement time history conversion 

using cumulative trapezoidal numerical integration, finite element analysis 

(FEA) of coil spring and fatigue life prediction of the spring. The acceleration 

time histories of the vehicle front Macpherson suspension were measured 

using two single axis accelerometers. One of the accelerometers was attached 

at the lower arm of the vehicle to measure un-spring mass vibration signal as 

shown in Figure 1(a). Another accelerometer was attached at the top mount 

of the suspension strut to collect vibration signal of sprung mass as shown in 

Figure 1(b). A uniaxial strain gauge was attached at the critical region of the 

coil spring for strain data collection as shown in Figure 1(c). The 

accelerometers and uniaxial strain gauge were then connected to a data 

acquisition system as shown in Figure 1(d) to record the time histories. The 

sampling rate was determined to be 1000 Hz to include all dynamic 

characteristics of the road [9] were 1000 Hz was sufficient for spring fatigue 

analysis, as reported by Putra et al. [8].  

 

 

  
(a) (b) 

 
 

(c) (d) 

 

Accelerometer 

Strain gauge 
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acquisition 
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 Figure 1: Experimental setup of road data collection, (a) accelerometer at 

lower arm (b) accelerometer at upper body, (c) strain gauge at coil spring, (d) 

data acquisition system 

 

The process flow for force signal generation is shown in Figure 2. 

Initially, the vehicle was driven across a standard road for acceleration data 

measurement. The procedures to obtain the spring force time histories were 

shown in Figure 3 where the spring displacement was difference of u2 and u1. 

After the acceleration time histories were obtained, the time histories were 

then converted into velocity time histories using cumulative trapezoidal 

numerical integration. To obtain the displacement time histories, the velocity 

time histories were again integrated. In this dynamic case, the vehicle wheel 

was moved relatively to the vehicle body as shown in Figure 3. Therefore, 

the relative displacement between the displacement time histories of the 

wheel and vehicle body was obtained through a subtraction. Nevertheless, 

drift of integration point existed which caused deviation of the outcome. 
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Figure 2: Process flow of signal generation for fatigue analysis 

 

 
Figure 3: Relative movement of spring 

 

where u2 is the movement of sprung mass and u1 is the movement of un-

sprung mass, 𝑢̇ is the relative displacement. With the known spring stiffness, 

the relative displacement time history was further converted into force time 

histories based on Hooke’s law as below: 

spring 
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 𝐹 = 𝑘𝑥      (2) 

              

where F is the spring force, k is the spring stiffness and x is the spring 

displacement. The damping effects were small as reported in [10] and 

therefore neglected in this analysis. There is a relationship between strain and 

displacement which is defined as follows: 

 

 
𝜀 =  

𝛥𝐿

𝐿
 

(3) 

 

 

where ε is the strain, L is the displacement. 

 

For FE analysis, a geometry of the spring model was constructed 

using a commercial CAD software, as shown in Figure 4. The spring model 

was pre-processed with meshing of tetra elements with 9227 nodes and 7170 

elements. This spring model has considered the 3D stress including shear 

effects. For applied material, the most common used spring SAE 5160 with 

heat treatment and the mechanical properties of the spring steel are listed in 

Table 1. The top of the spring was fixed with a constraint while a load of 

2000 N was applied at the bottom. Linear static analysis was performed to 

obtain the stress strain results of this spring design. In terms of fatigue life 

prediction, the FE model with stress strain information, the force time 

histories and material cyclic properties were used as input to three common 

used strain life fatigue model. 

 

In general, fatigue analysis of spring could be divided into stress-life 

(S-N) or strain-life (ε-N) approach. S-N approach provides nominal fatigue 

results while ε-N approach gives the localised fatigue results [11]. ε-N 

approach considered also the low cycle fatigue where the crack initiation 

occurs. Hence, ε-N approach was more suitable for automotive fatigue 

analysis. For automotive application, uniaxial strain life approach was used to 

predict the fatigue life of a wheel rim [12]. Peiklo et al. [13] utilised the 

uniaxial ε-N approach to predict fatigue life of a toothed segment of an 

automotive gear. Three widely adopted ε-N models were applied in their 

analysis. 
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Figure 4: CAD model of the coil spring 

 

The three strain life fatigue models were Coffin-Manson, Morrow 

and Smith-Watson-Topper (SWT) approach. These three models were widely 

used and providing different results of estimation based on mean stress 

effects [10]. The Coffin-Manson model is derived as follows [14]: 
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where σ’f is the fatigue strength coefficient, Nf is the number of cycles to 

failure for a particular stress range, b is the fatigue strength exponent, ε’f is 

the fatigue ductility coefficient and c is the fatigue ductility exponent. The 

Morrow strain life model is defined as follows: 
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The SWT model is mathematically defined as below: 
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Table 1: Properties of carbon steel SAE 5160 [15] 

Properties Value 

Yield strength (MPa) 1,487 

Ultimate tensile strength (MPa) 1,584 

Material modulus of elasticity 

(GPa) 

207 

Fatigue strength coefficient 2,063 
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Fatigue strength exponent -0.08 

Fatigue ductility coefficient 9.56 

Fatigue ductility exponent -1.05 

Cyclic strain hardening exponent 0.05 

Poisson ratio 0.27 

 
Results  
 
The measured acceleration time histories from the vehicle is shown in Figure 

5. As observed from Figure 5, most of the portion of the signals were in 

stationary condition. The signals have showed some transient response in 

time 60 to 63 s and 89 s as highlighted because the vehicle has passed 

through a pothole. When the vehicle travelled across the pothole, the wheel 

and body of the vehicle experience extra response and peaks were produced. 

Through applying the first cumulative trapezoidal numerical integration, the 

velocities of the lower arm and suspension top mount was obtained. The 

velocity time histories were plotted into Figure 6. Figure 6(a) shows the 

velocity time history for sprung mass while Figure 6(b) shows data for un-

sprung mass. The velocity time histories were indicating some similar peaks 

at time 60 to 63 s and 89 s. The velocity time histories were then integrated 

for a second time to obtain the reference displacement as illustrated in Figure 

7. Based on the observation, the time histories of sprung and un-sprung mass 

possess very similar pattern and trend because of the excitation sources were 

the same but with phase shift.  

 

 
(a)  

 
(b) 

Figure 5: Measured acceleration time histories, (a) sprung, (b) un-sprung 

mass 
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(a) 

 
(b) 

Figure 6: Velocity time history, (a) sprung mass, (b) un-sprung mass 

 

 
(a) 

 
(b) 

Figure 7: Displacement time history, (a) sprung mass, (b) un-sprung mass 

 

The relative displacement time history was obtained and plotted into 

Figure 8. The relative displacement was converted into force time history 

through multiplication of spring stiffness of 20 N/mm and shown in Figure 9. 

Due to linearity assumption of the spring, the force time history had the same 

trend as displacement time history but different in scale. The measured strain 

time history is shown in Figure 10. Strain time history was used for the 

standard fatigue life estimation and validation purpose. Based on the 

durability theory, the prerequisite to perform fatigue life estimation were 

loadings, material cyclic properties and the component geometry. Hence, the 

structure of the spring was analysed using FEA and the stress contour is 

plotted into Figure 11. Higher stress was observed at the inner surface of the 

spring and maximum von Mises stress as high as 1208 MPa was obtained. 

According to the material properties, the stress level was below yield strength 

and this indicated that the design of spring was good in terms of static 

strength. 
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Figure 8: Relative displacement time history 

 
Figure 9: Force time history 

 
Figure 10: Measured strain time history 

 

  
Figure 11: Stress contour of spring model 

 

The force time history and spring model were used as input for 

fatigue life prediction. The fatigue contour of the spring using Coffin-

Manson model was plotted into Figure 12 while the the fatigue behaviour of 

the spring using Morrow model is plotted into Figure 13. Meanwhile, the 

results of SWT model is plotted into Figure 14. The red and yellow region 

indicated the area where the crack was initiated. As observed from the fatigue 

damage distribution, the fatigue failure shall occur in the inner surface of the 

spring which the FEA stress results of the spring suggested the same 

distributions. The high stress region of spring inner surface was also reported 

in [16] where crack of coil spring was usually initiated from inner surface to 
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outer surface. The fatigue life and damage results are tabulated into Table 2. 

Morrow and SWT model consider the mean stress effects and hence, the 

mean value of the loading time history was obtained. Based on a statistical 

calculation, the force loading time history consisted of approximate zero 

mean value. 

 

When studied the fatigue results from Table 2, it was showing that 

the Coffin-Manson gives the highest fatigue life results when compared to 

Morrow and SWT model. As proposed by Al-Asady et al. [17], when the 

loading was tensile predominant, SWT model provided a more realistic 

prediction for carbon steel. When the load was compressive in nature, 

Morrow model was the suitable model for fatigue life prediction. In addition, 

the research has also suggested that when the mean loading was zero, all 

three models provided acceptable results. In this research, the simulated 

fatigue life using all three models were lied within a close range. The fatigue 

life analysis of the same spring using strain measurement was performed by 

Putra et al. [18] and the fatigue life of 1.53 × 105 was reported. The difference 

between force simulated fatigue life and proposed fatigue life are listed in 

Table 3. Based on the percentage differences, the acceleration-force fatigue 

life predictions have yielded a quite good accuracy.  

 

  
(a) (b) 

Figure 12: Fatigue contour of spring using Coffin-Manson model, (a) fatigue 

life, (b) fatigue damage  
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(a) (b) 

Figure 13: Fatigue contour of spring using Morrow model, (a) fatigue life, (b) 

fatigue damage  

 

 

  
(a) (b) 

Figure 14: Fatigue contour of spring using SWT model, (a) fatigue life, (b) 

fatigue damage 

 

Table 2: Fatigue simulation results 

 Coffin-Manson Morrow SWT 

Fatigue life (blocks to 

failure) 
3.12 × 105 1.76 × 105 1.44 × 105 

Fatigue damage (damage / 

block) 
3.12 × 10-6 5.67 × 10-6 6.97 × 10-6 



The Need to generate a Force Time History Towards Life Assessment of a Coil Spring 

23 

Table 3: Comparison between generated force and proposed fatigue life 

Generated force fatigue 

life (blocks to failure) 

Proposed fatigue life 

(blocks to failure) [18] 

Difference (%) 

3.12 × 105 1.53 × 105 104 

1.76 × 105 1.53 × 105 15 

1.44 × 105 1.53 × 105 6 

 

To further validate the fatigue prediction results, the measured strain 

life time histories were used to predict the fatigue life and compared with the 

acceleration-force fatigue lives. The results of generated force and strain 

predicted fatigue life are tabulated into Table 4. A 1:2 or 2:1 correlation 

curve was used to determine the correlation between the acceleration-force 

converted fatigue life and strain measurement predicted fatigue life as shown 

in Figure 13. The results shown that the Morrow and the SWT method fitted 

well into the correlation curve. However, the Coffin-Manson prediction result 

was not fitted into this correlation curve. In this analysis, the Coffin-Manson 

relationship has shown a non-conservative prediction for this acceleration-

force fatigue analysis. Abdullah et al. [19] has also reported that the Coffin-

Manson relationship provided the most non-conservative results when 

compared to Morrow and SWT method in a steel lower arm fatigue analysis. 

In this analysis, the Coffin-Manson model has shown the result that 

distributed far away from the acceptable region. The results have also 

indicated that the accelerated-force fatigue life gave more consistent analysis 

results.      

 
 

 
Figure 13: The correlation between acceleration-force and strain fatigue life 
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Table 4: Comparison between generated force and strain fatigue life 

Generated force fatigue 

life (blocks to failure) 

 Strain fatigue life 

(blocks to failure)  

3.12 × 105  1.02 × 107 

1.76 × 105  3.28 × 105 

1.44 × 105  2.27 × 105 

 
Conclusions 
 
The fatigue life prediction of coil spring has been presented using two 

measured acceleration signal and cumulative trapezoidal numerical 

integration. The displacement time histories of the spring were obtained 

through the integration and converted into force time histories. In order to 

validate the usability of the generated force signal, the generated force signal 

was used to predict fatigue life of the spring. The fatigue results have shown 

an acceptable correlation with proposed fatigue life prediction where the 

fatigue lives of the spring were 3.12 × 105, 1.76 × 105 and 1.44 × 105 blocks 

to failure using Coffin-Manson, Morrow and SWT model, respectively. The 

generated force fatigue lives were then validated with measured strain signal 

using a conservative approach. Both the validations have revealed that 

Coffin-Manson fatigue life prediction were deviated from acceptable the 

range. However, this method could provide an acceptable fatigue life 

prediction method of a coil spring without using any strain measurement data 

acquisition system. 
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